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Abstract
Binary instrumentation is a robust and powerful technique which facili-
tates binary code modification of computer programs even when no source
code is available. This is achieved either statically by rewriting the binary
instructions of the program and then executing the altered program or dy-
namically by changing the code at run-time right before it is executed. The
design of most Dynamic Binary Instrumentation (DBI) frameworks puts
emphasis on ease-of-use, portability, and efficiency, offering the possibility
to execute inspecting analysis code from an interpositioned perspective, main-
taining full access to the instrumented program. This has established DBI
as a powerful tool utilised for analysis tasks such as profiling, performance
evaluation, and prototyping.
The interest in employing DBI tools for binary hardening techniques
(e. g. Program Shepherding) and malware analysis is constantly increasing
among researchers. However, the usage of DBI for security related tasks is
questionable, as in such scenarios it is important that analysis code runs
isolated from the instrumented program in a stealthy way.
In this thesis, we show (1) that a plethora of literature implicitly seems to
assume isolation and stealthiness of DBI frameworks and strongly challenge
these assumptions. We use Intel Pin running on x86-64 Linux as an example
to show that assuming a program is running in context of a DBI framework
(2) the presence thereof can be detected, (3) policies introduced by binary
hardening mechanisms can be subverted, and (4) otherwise hard-to-exploit
bugs can be escalated to full code execution.





Abstract
Binärinstrumentierung ist eine zuverlässige und mächtige Methode, welche
es ermöglicht Software zu verändern, auch wenn deren Quellcode nicht
zur Verfügung steht. Bei statischer Binärinstrumentierung werden die
Anweisungen auf Binärebene des Programms vor der Ausführung im
Binärprogramm verändert, während bei dynamischer Binärinstrumen-
tierung die Manipulation der Intruktionen erst kurz vor der Ausführung
zur Laufzeit des Programms stattfindet. Die meisten existierenden Frame-
works zur Dynamischen Binärinstrumentierung (DBI) wurden mit dem
Ziel einer einfachen Bedienbarkeit und Portabilität entwickelt, um so
Möglichkeiten zu bieten zusätzlichen Analyse-Code, während der Laufzeit
des zu analysierenden Programms ausführen zu können.
Die vielseitigen Einsatzmöglichkeiten von DBI haben dazu geführt, dass die
entsprechenden Tools immer öfter im Zusammenhang von Absicherung
von Binärprogrammen und Malware-Analyse eingesetzt werden. Der Ein-
satz von DBI in diesem Umfeld ist jedoch fragwürdig, da die Analyse des
entsprechenden Programms oft transparent stattfinden soll. Das ist beson-
ders wichtig im Falle von bösartiger Software, da sie ihr Verhalten ändern
kann sobald eine Analysesituation erkannt wurde.
In dieser Arbeit zeigen wir, (1) dass die vorhandene Literatur im Allge-
meinen eine Isolierung und Transparenz der DBI-Frameworks annimmt.
Anhand von Intel Pin auf x86-64 zeigen wir die Unzulässigkeit dieser An-
nahmen auf: Wir legen dar, (2) dass ein Programm welches im Kontext eines
DBI-Frameworks ausgeführt wird dies auch erkennen kann. Abschließend
arbeiten wir heraus, dass (3) mit DBI implementierte Regeln zur Umset-
zung von Sicherheits-Policies in einem Binärprogramm leicht außer Kraft
gesetzt werden können und – kontraintuitiv – (4) Schwachstellen, die sonst
schwierig ausnutzbar sind, zu einer Code-Execution führen können wenn
das attackierte Programm im Kontext eines DBI-Frameworks ausgeführt
wird.
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1 Introduction

Malware continues to be a growing cyber security threat even nowadays. In the early days
of the Internet malware was developed for mainly experimental reasons [1]. However, in
recent years we are witnesses of malware utilised for theft of confidential data, denial-of-
service of commercial systems, or even black mailing and cyber espionage. Industry and
academia are constantly striving to develop countermeasures against these threats in form
of advanced malware detection approaches. However, malware developers continue to
become more creative in their attempt to hinder the analysis of malware samples. Dynamic
Binary Instrumentation (DBI) can help analysts to inspect applications’ characteristics or
alter their functionalities even when no source code is available. Therefore, DBI is easily
employed as a malware analysis tool where the existence of anti-analysis techniques and
the absence of source code are very common. Moreover, the current state of the art in
malware analysis is of the opinion that “implementing the analysis functionality in an
emulator or virtual machine potentially allows an analysis approach to hide its presence
even from malware that executes in kernel space” [2]. Researchers claim that DBI can
supply such an analysis environment and ease the study of malware’s behaviour.

Similarly, computer systems are often subject to external attacks that aim to gain
control over their functionality by leveraging malicious inputs. Such attacks attempt to
trigger existing programming mistakes in software such as memory corruption bugs to
subvert execution. Although significant effort has been spent to mitigate the effect of these
flaws [3], [4], to date there is no silver bullet preventing the exploitation of all vulnerabilities.
DBI frameworks provide a possibility to conveniently add new functionalities to existing
binaries, thus rendering these frameworks useful to harden software. One peculiarity,
illustrating this approach, is program shepherding [5] – a technique that involves monitoring
of all control transfers to ensure that each satisfies a given security policy, such as re-
stricted code origins and controlling return targets. According to the program shepherding’s
paradigms this is only possible because the hardened application is executed in the context
of a DBI framework. A typical example of program shepherding is the implementation of
Control Flow Integrity (CFI) policies using DBI to operate on Commercial Off-The-Shelf
(COTS) binaries.

In this work we challenge both scenarios painted above. We argue that the original
intent to build DBI frameworks was the ability to execute analysis code in a way that
interposes execution of the instrumented program, i. e. analysis code can subscribe to
be notified of any occurring event taking place in context of the instrumented program.
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1.1 Scope

Furthermore, an important design goal of DBI was to equip analysis code with full
inspection capabilities covering the complete memory state of the target. In practice this
is typically achieved by introducing a single address space for both analysis code and
instrumented program.

This key observation is the main motivation behind our research. We show that due to
the shared memory model, DBI frameworks in their current state are inherently incapable
of providing neither stealthiness of the analysis code nor isolation of the analysis code
against manipulations of the instrumented target. In our opinion, this conceptionally renders
them unsuitable for any security related application.

1.1 Scope

To our perception, the most prominent examples of DBI frameworks nowadays are In-
tel Pin [6], Dyninst [7], Valgrind [3], DynamoRIO [8] and (more recently) QBDI [9] and
Skorpio [10]. In the following, we focus (almost exclusively) on Intel Pin version 3.5
in Just-In-Time (JIT) mode on Linux while checking our results also against other com-
mon DBI implementations. We also utilise, as the time of writing, the latest release of
Ubuntu 17.10 (64 bit) so that we can benefit from the latest security mechanisms, such as,
for example, a higher number of randomised bits by Address Space Layout Randomisation
(ASLR)1. Moreover, all of our tests are executed on an Intel Core i7 4960HQ with 16 GB of
RAM.

All of the presented tools and Proof Of Concept (POC) code examples in this thesis are
released under an open-source license and can be downloaded from GitHub 2.

1.2 Contributions

We define three fundamental research questions framing this thesis which discuss DBI
engines’ detectability by the instrumented application, possibilities to escape the DBI
framework’s sandbox driven by its characteristics, and how instrumentation can increase
the attack surface and facilitate the exploitation of already present bugs. In the following,
we briefly introduce these questions together with arguments defending their prominence.

First of all, we consider possibilities to detect whether a certain binary is running in the
context of a DBI framework. One of the main goals of a software, designed to enforce some
security techniques (e. g. CFI), is to remain undetected by the hardened application. How-
ever, some DBI characteristics can be abused to expose the underlying instrumentation
process.

Secondly, we take under consideration the question, whether it is trivially possible for
a instrumented application to escape the DBI sandbox and execute arbitrary code. Since the
instrumentation framework and the application share the same address space, one can
alter the currently executed code and influence the future program’s execution. As a result,
the instrumented application can completely turn off the instrumentation’s logic, thus
eliminating all of the enforced security measurements by the DBI framework.

Lastly, we consider whether the utilisation of DBI frameworks introduce more opportunities
to exploit already present vulnerabilities. We evaluate our findings by executing commercial

1See /proc/sys/vm/mmap_rnd_bits
2https://github.com/zhechkoz/pwin
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1.3 Outline

applications containing already known bugs which are unlikely exploitable and deter-
mine whether the attack surface has increased when executed in the context of a DBI
framework.

In a nutshell, this thesis makes the following contributions:

Relevance We identify DBI to be a common instrument for security-related tasks such as
malware analysis and application hardening in literature.

Detectability We demonstrate that it is trivial for an application to detect whether it is
running in context of a DBI framework, enabling malicious software to behave in
different ways during analysis.

Escapability We attest that a malicious application can break out of the instrumentation
engine and execute arbitrary code outside of the DBI framework.

Increased Attack Surface We argue that counter-intuitively instead of increasing security
by introducing DBI based software hardening measures, DBI actually decreases the
overall security by escalating an otherwise hard-to-exploit real world bugs into full
code execution.

1.3 Outline
The remainder of this thesis is structured as follows: First in Section 2 we provide essential
background information about DBI frameworks and their utilisation in various areas, as
well as some common binary exploitation and defence techniques. Moreover, we discuss
the crucial properties an environment for malware analysis and sandboxing must possess.
After that, we describe various techniques how a DBI engine can be detected by the
instrumented application in Section 3. We continue by showing how an instrumented
application can escape the DBI sandbox and continue its execution without the supervision
of the Virtual Machine (VM) in Section 4. Furthermore, in Section 5 we present a POC that
utilises our findings to execute arbitrary code on the victim’s machine. Finally, in Section 6
we discuss existing research connected to this thesis and then we conclude our work by
discussing limitations and future work.

Parts of this thesis are based on an unpublished work PwIN - Pwning Intel piN - Why
DBI is unsuitable for security applications [11] written in collaboration with Julian Kirsch,
Bruno Bierbaumer, and Thomas Kittel.
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2 Background

In this section we discuss background about essential characteristics of DBI in general,
as well as some specific features of Intel Pin. Furthermore, we introduce a consistent
taxonomy used throughout this work, and discuss the usage of DBI frameworks for
security in academic literature. Additionally, we present some of the most prominent
examples of attack vectors and defence mechanisms in today’s computer systems.

2.1 Binary Instrumentation
Binary instrumentation frameworks provide simple means of adding new functionality to
already compiled executables, regardless of the availability of source code. They allow
fine-grained examination of instrumented application’s code to facilitate understanding of
its functionality and ease its modification. Generally, there are two methods to achieve this:
(1) statically – rewriting the binary instructions of the application and then execute it, or
(2) dynamically – changing the code at run-time right before it is executed. In fact, there are
many approaches to conduct static instrumentation, such as Intel Pin in Probe Mode [6],
Dyninst [12] or Multiverse [13] which allow native execution of the instrumented binary.
Nevertheless, DBI is the more powerful technique because it grants access to run-time
context information. A typical DBI framework consists of three components in a single
address space:

1. The compiled target program which functionality should be altered (instrumented
application)

2. The functionality that is to be added to the target program (analysis plugin)

3. The DBI platform injecting the instrumentation plugin into the instrumented binary
and ensuring proper execution (instrumentation platform)

Implementers typically develop their own analysis plugins which the instrumentation
platform injects into the binary code of an application (instrumented application) that should
be analysed. The instrumentation platform exposes an API that enables the analysis plugin
to register callbacks for certain events happening during the execution of the instrumented
application. For example, it might be desirable for an analysis plugin implementing a
shadow stack to receive a callback whenever the instrumented application tries to execute a

5



2.2 Intel Pin DBI Framework

call or ret instruction (interposition). Once the analysis plugin is notified (synchronously)
of such an instruction’s execution, it may now freely inspect or modify all register and
memory contents of the instrumented application (inspection).

In the following, we solely consider the Intel Pin dynamic instrumentation tool plat-
form [6], its high level working principles, as well as some unpublished features based
on reverse engineering. We have chosen to study Pin in further detail because of its
prominence among the researcher community and the large number of developed analysis
plugins.

2.2 Intel Pin DBI Framework
The Pin DBI framework has been actively developed by Intel since 2005 and todays most
current version is 3.6. There are existing versions for the three major Operating Systems
(OSs): Windows, Linux, and macOS and they can be downloaded from the official Pin
website [14].
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Instrumentation API

Code Cache

D
is

pa
tc

he
r

Virtual Machine (VM)

JIT Compiler

Emulation Unit

Pin
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Operating System

Hardware

3
2

1

Figure 1: An overview over the PIN architecture taken from Luk et al. [6]. The numbering corresponds to
the three typical DBI framework components presented in Subsection 2.1.

Figure 1 illustrates the three main DBI components in the context of Pin. The DBI
engine itself consists of a VM, a code cache, and an instrumentation API invoked by
Pintools. The instrumentation is performed by a JIT compiler as a part of the VM which
input is native executable code. The Pin engine intercepts the first instruction of the instru-
mented executable and generates almost identical code for the next couple of instructions.
However, Pin ensures that in the end it will regain control and no register operations will
influence its internal logic. Pin utilises register reallocations to achieve this goal, which
involves generating a mapping between registers employed in the original program’s
trace and the corresponding compiled instructions in the code cache. In this way, although
Pin, instrumented application, and Pintool need the same registers for certain instructions,
they will not overwrite each others’ state. Next, the resulting instrumented machine code
is saved in the code cache and the execution is transferred to it. After regaining control,
the JIT compiler fetches the next sequence of instructions which has to be executed and
generates more code. Over the course of this process, the Pintool has the opportunity to
instrument the generated code by using the provided Pin framework API. Depending
on the generated instrumentation code, some of it can be inlined which may improve
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Figure 2: Intel Pin’s injection procedure, marking the start of the instrumentation process. The executed
command in this case is pin -t Pintool -- program. All figures are based on Diskin [15].

the performance of the program. Additionally, Pin checks the liveliness of the instruc-
tion sequences (traces) residing in the code cache and either reuse them if applicable or
compile them again. The whole process is being conducted until the binary’s execution is
complete. Note that the application’s original code is never executed or altered. Each time
the VM is entered the register state of the instrumented application is saved and upon
exit restored. The instrumentation can be performed on four different levels: instructions,
traces, procedures and images.

Figure 2 illustrates the Pin injection process which initialises the framework and starts
the instrumented program in Linux OS. Firstly, a 32 bit script (not shown in the figure) is
executed with the necessary parameters (pin -t Pintool -- program), which determines
the correct version of Pin (pinbin) for the current platform and prepares the system for its
execution (e. g. sets the necessary environment variables). The spawned pinbin process
can be seen in Figure 2a on the left. The injection process involves a fork of pinbin to
a new process (1), followed by a fork of the same process (2). The second process then
exists (3) and leaves the original pinbin executable with its grandchild process, effectively
a daemon, to continue running. Next as seen in Figure 2b, the newly created daemon
process, called injector, utilises the Unix ptrace API (4) to obtain control of its parent’s
execution, pinbin (injectee) which awaits that by issuing a PTRACE_TRACEME request. The
injectee then calls execve(program, argv, envp) (5) which preserves the original Process
Identifier (PID) but the text, data, BSS, and stack of the calling process are overwritten by
that of the program loaded. After that, the injector pauses the execution of the injectee and
loads the essential Pin components (pinbin, libraries, Pintool) into the address space of
the newly started program which will be instrumented (6), illustrated in Figure 2c. Before
detaching and exiting (8), the injector passes the control of the instrumented program
to the new copy of Pin, residing in injectee’s memory (Figure 2d). After the Pintool is
initialised, Pin creates the initial context and starts jitting the application at its entry
point (7). By default, the parent process and its grandchild are respectively injectee and
injector, however, these roles can be switched by setting the -injection child option
when starting Pin. According to Intel, the default option is recommended and more reliable
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2.3 Required Security Properties of Analysis Frameworks

than the second one. Moreover, the PID of the remaining process is equal to the first started
process’ PID which gives the user an impression that this is the original started process.
Since Pin employs the Unix ptrace API to control the injectee process, the ptrace_scope
in Yama Linux Security Module3 has to be set to classic or restricted. If ptrace_scope is
set to admin-only attach, a child injection is the only working option. Additionally, the
utilisation of the ptrace API in the DBI framework introduces some degree of complication
when attempting to debug the instrumentation, as a program cannot be traced by a more
than one process. Fortunately, Pin implements a GDB server which allows to pause the
instrumentation procedure when it starts and attach a debugger to it.

As shown in Figure 1, there are three major binaries residing in memory during the
time of instrumentation: the application, Pin, and Pintool. In order to guarantee that these
components do not interfere with each other, they do not share any libraries, although
they occupy the same address space. Additionally, to improve platform independence,
Intel introduced PinCRT library in Pin version 2.14, a wrapper of some crucial functions
to interact with the underlying OS. Pin and the Pintool interact with the underlying OS
through the API provided by PinCRT library, while the instrumented application continues
using directly the standard system libraries.

2.3 Required Security Properties of Analysis Frameworks
Before using DBI for malware detection and analysis, Virtual Machine Introspection (VMI)
was the tool of choice to interact with malicious software. According to Garfinkel et al. [16]
the main properties of VMI are Interposition, Inspection, and Isolation. In context of this
work, we follow this taxonomy to outline key requirements that any dynamic analysis
framework needs to fulfil. We use this work, as within DBI the analysis plugin is referenced
as VM. In accordance to this work, we introduce analysis plugin and the instrumentation
platform to form the analysing system, as opposed to the instrumented application which
constitutes the analysed system. Then, the Garfinkel and Rosenblum taxonomy can be
rephrased to DBI tools as follows:

R1 Interposition The analysing system can subscribe to and is notified of certain events within
the analysed system. For DBI this means that the instrumentation platform stops
execution of the instrumented application and transfers control to the analysis
plugin once certain events occur.

R2 Inspection The analysing system has access to all state of the analysed system. Thus, the
analysed system is unable to evade analysis. In context of our work this implies that the
analysis plugin can freely access and modify all memory and register contents of the
instrumented application.

R3 Isolation The analysed system is unable to tamper with the analysing system or any other
analysed system. This means that the instrumentation platform and the analysis
plugin have to defend themselves against (malicious) modifications performed by
the instrumented application.

In addition, researchers realised that dynamic analysis systems suitable to handle
malware also need to operate in a way transparent to the analysed system. This has the

3https://www.kernel.org/doc/Documentation/security/Yama.txt

8

https://www.kernel.org/doc/Documentation/security/Yama.txt


2.4 DBI Use in Literature

simple reason that so-called split personality malware might evade dynamic analysis
if it is capable of detecting the analysis environment, for example, as pointed out by
Lengyel et al. [17]:

R4 Stealthiness The analysed system is unable to detect if it currently undergoes analysis. This
means that the instrumented application must not be able to infer the presence of
the instrumentation platform.

Note that from these requirements, R1 (Interposition) and R2 (Inspection) are funda-
mental features of DBI. In the following thesis, we will challenge the previously defined
requirements R3 (Isolation) and R4 (Stealthiness) and show that subversion of any thereof
consequently also annihilates R1 (Interposition) and R2 (Inspection).

2.4 DBI Use in Literature
There are numerous examples of DBI utilisation not only by the research community but
also in commercial software development.

Binary Analysis

Many researchers develop DBI tools in order to perform analysis of binaries, e. g.
Saudel et al. developed Triton [18], a concolic execution framework. Concolic execution
allows execution of a program using symbolic variables instead of concrete values, thus
achieving all possible path conditions. Clause et al. [19] implement a dynamic taint analysis
tool which supports data-flow and control-flow based tainting using DBI.

Bug Detection

Systems programming languages such as C and C++ provide more flexibility for program
optimisation. However, requiring the programmer to manually manage memory and
observe typing rules leads to security vulnerabilities in practice. Memory corruptions, such
as buffer overflows, allow malicious users to use different attack strategies, such as Return-
Oriented Programming (ROP) to alter the program’s execution path. Unfortunately, even
in 2018, vulnerabilities resulting from memory corruption bugs [20] are still problematic.
Many researchers implement vulnerability detection and prevention tools using DBI to
limit the potential damage. This is the case because DBI provides them the advantage
so that custom security code may be directly executed within the analysed/hardened
program. The Valgrind distribution includes a lot of other profiling and debugging tools,
such as Memcheck [21] which detects memory-management problems, as well as the
heap profiler Massif [22]. Similarly, on the Windows family of OSs Dr. Memory [4] is a
memory monitoring tool built on the DynamoRIO framework capable of identifying
memory-related programming errors.

Program Shepherding / (CFI)

In addition to the sole purpose of bug detection, a lot of research is recently conducted
regarding program shepherding and CFI which attempts to restrict the set of possible
control flow transfers to those that are strictly required for correct program execution [23].
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In order to implement this approach, Davi et al. [24] developed a Pintool that dynami-
cally enforces sanitising return address checks by employing a shadow stack at run-time.
While the idea of a shadow stack is much older [25], [26], the advantage of this approach
was the ease of development of the dynamic security enforcement tool. A similar ap-
proach was chosen by van der Veen et al. who developed a Linux kernel module and
a Dyninst plugin [27] which both determine and restrict the valid execution paths and
thereby ensure correct program execution. Instead of verifying the return address’ validity,
Tymburibá et al. [28] try to utilise ROP gadgets’ characteristics to prevent the hijacking
of program’s execution flow. In their Pintool called RipRop they detect unusually high
rates of successive indirect branches during the execution of unusually short basic blocks,
which may be an indication of a undergoing ROP attack. Note that besides their use
of DBI, there are some uncertainties associated with this approach, for instance what
qualifies a basic block as short one and how many successive indirect branches indicate a
ROP attack. Furthermore, it is not uncommon for a program to show such an execution
behaviour under normal conditions, e. g. applying a transformation function on array
elements. Later, in the same year Follner et al. present ROPocop [29], another Code-Reuse
Attack (CRA) detection framework targeted at Windows x86 binaries. It combines the
idea of Tymburibá et al. together with a custom shadow stack and a technique which
ensures no data is unintentionally executed. Yet another example of a Pintool utilised in
ROP attack detection was proposed by Elsabagh et al.. Their tool EigenROP attempts to
detect anomalies in the execution process [30], due to execution of ROP gadgets, based
on directional statistics and program’s own characteristics. This is achieved by firstly ex-
tracting and learning arbitrary relationships among program’s characteristics, e. g. register
reuse distance, number of unique cache blocks referenced between subsequent memory
reads. Then, when the program is executed, it is monitored for deviations from the already
collected statistical data which may be an indication of ROP gadgets execution. Finally,
Qiang et al. built a fully context-sensitive CFI tool [31] on top of Pin that may be used to
protect COTS binaries. Among other advantages is that the tool checks the execution path
instead of checking each edge in this execution path one by one which helps accelerate the
process.

Malware Analysis

Malware is still one of the Internet’s major security threats and dynamic binary analysis is
seen as an essential defensive component. Many security analysts employ DBI tools to
study and profile malicious programs’ behaviour. Both to harden productive applications
as well as to understand and reverse engineer potentially malicious program functionality
in a sandbox environment. For instance, Gröbert et al. take advantage of a Pintool to
generate execution traces and apply several heuristics to automate the identification
of cryptographic primitives [32] in malicious samples. Kulakov developed a Pintool
which performs static malware analysis in order to generate a loose timeline of the whole
execution [33]. Additionally, he created an IDA plugin for better visualisation of the
data. Banescu et al. [34] proposed an empirical framework which is able to behaviourally
obfuscate standard malware binaries. Program’s observable behaviour or path is defined
by all internal computations and the sequence of accomplished system calls during its
execution. In order to obfuscate malware samples, Banescu et al. [34] implemented a
Pintool which inserts and reorders system calls into the binary without modifying its
functionality but altering its known observable behaviour.
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Note that for the latter two of these domains, both Isolation and Stealthiness is a
fundamental requirement to provide the proposed security guarantees.

2.5 Shellcode and Code-Reuse Attack
In the following, we briefly introduce the working principles of the most typical exploita-
tion attacks which would aid understanding the research conducted in this thesis.

Firstly, the most straightforward way of exploiting a software vulnerability is injecting
a small piece of new code, i. e. shellcode [20] in the target program and then transferring
the execution flow to it. Naturally, the location of the injected code has to be marked as
executable (and writable). However, most platforms ensure that no data is executable,
rendering this exploit as impractical. While shellcode attacks are based on injecting new
code in program’s address space, ROP relies on short instruction sequences (gadgets),
already present in the target program to build an exploit. Each gadget performs some
small computation, such as adding two registers or loading a value to memory, and ends
with a return instruction. We can chain gadgets together and transfer the control flow from
one gadget to another by writing appropriate values on the stack. Recently, some new
variants of ROP attacks without using ret instructions were proposed. Checkoway et al.
found it is possible to perform return-oriented programming by looking for a pop in-
struction followed by an indirect jump (e. g. pop rdx; jmp [rdx]), called Jump-Oriented
Programming [35].

Despite improvements of the mitigation techniques against those attacks discussed in
the next section, there are still possibilities to leverage them and compromise software.

2.6 Common Exploitation Mitigation Techniques
There are a variety of defence mechanisms employed to protect binaries against control
flow hijacking attacks. We consider some of these approaches which are essential for un-
derstanding the concepts presented in this thesis. Some of the attack mitigation techniques
attempt to hinder exploits at different stages of program’s execution by: (1) ensuring no
data gets executed (W⊕X), (2) randomising the location of code regions or code blocks,
e. g. ASLR, or (3) verifying the correctness of code pointers when they are used, e. g. CFI.

Control Flow Integrity

Control Flow Integrity restricts the control flow of an application to a statically pre-
computed Control Flow Graph (CFG). Each indirect control flow transfer (an indirect
call, indirect jump, or function return) is allowed to transfer control at runtime only to
a finite set of statically determined targets for this code location. Generally, CFI relies
on source code integrity, i. e. an attacker cannot manipulate the executed code of the
application. If this is not the case, they might tamper with the code responsible for the
CFI enforcement and in the worst case completely disable it. When CFI is implemented
in a running application, an attacker may still manipulate code (or data) pointers which
normally would result in an unintended code execution. However, as soon as the program
tries to follow some compromised pointer which is not included in the allowed targets for
this transfer instruction, the CFI mechanism should detect (and stop) it.

The effectiveness of CFI depends on two components: (1) the (static) precision of the
CFG that determines the upper bound of precision, and (2) the (dynamic) precision of
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the individual runtime checks. Naturally, CFI can only be as precise as the CFG that is
enforced. If it is too permissive, it may allow illegal control transfer. Another characteristic
of CFI is that the whole code basis has to be present upfront (e. g. no shared libraries) in
order to successfully finish the static phase.

W⊕X

The main idea of W⊕X is that no memory is simultaneously executable and writable.
This reduces the risk that a malicious user may provide valid machine instructions, i. e.
shellcode, as input to a vulnerable program and then transfer the execution flow to it. Intel
enforces this technique on their x86 architecture by marking mapped pages in memory as
not executable by setting a No-eXecute (NX) bit.

Address Space Layout Randomisation

Address Space Layout Randomisation is a comprehensive and popular defence mechanism
that mitigates memory corruption attacks in a probabilistic manner. To exploit a memory
corruption vulnerability, such as return-to-libc, attackers need to determine the memory
layout of the target process or the system ahead of time. ASLR mitigates such attacks
by incorporating a non-deterministic behaviour in laying out the program’s or system’s
address space. More specially, whenever a program is loaded or a system is booted, the
ASLR mechanism randomises their address spaces, including stack, heap and libraries.
Additionally, some implementations of ASLR may also randomise the base address of
program’s code commonly known as Position Independent Executable (PIE).

On Linux OS ASLR operates on the granularity of virtual memory pages. Therefore,
it randomises only bits located beyond the position corresponding to the page size. For
example, because the page size of x86 architecture on Linux is typically 4096d = 212 Bytes,
ASLR is capable of randomising only the bits beyond the 11th position (counting zero-
based). Currently, kernels on x86-64 systems are capable of randomising 28 bits of the
virtual addresses, while newer versions (≥ 2.5) increase this number to 32 bits. Generally,
ASLR raises the bar for memory corruption attacks by rendering the guessing of essential
program structures’ addresses as less likely.
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3 Stealthiness

In this section we present several techniques that reliably detect the presence of different
DBI frameworks. To achieve this, we not only adopted several existing DBI detection tech-
niques [36] to Linux x86-64 but also found new, previously unknown detection techniques.
We group detection techniques in three categories; (1) code cache / instrumentation arte-
facts (CA), (2) JIT compiler overhead (CO), and (3) runtime environment artefacts (EA).
While we explain these techniques on Intel Pin, we found them also applicable to other
DBI implementations.

Technique Type Brief Description

envvar EA Checks for Pin specific environment variables on stack
enter CA Checks whether enter instruction is legal and can be exe-

cuted
fsbase* CA Checks if fsbase value is the same using rdfsbase and

prctl
jitbr* CO Detects time overhead when a conditional branch is jitted
jitlib CO Detects JIT compiler overhead when a library is loaded
nx* CA Tries to execute code on a non-executable page
pageperm EA Checks for pages with rwx permissions
mapname EA Checks mapped files’ names for known values (pinbin, vg-

preload)
ripfxsave CA Executes fxsave instruction and checks the saved rip value
ripsiginfo* CA Causes an int3 and checks the saved rip value in fpregs
ripsyscall CA Checks whether rip value is saved in rcx after a syscall
smc* CA Checks whether Self-Modifying Code is detected by the

framework
vmleave EA Checks for known code patterns (VMLeave)

Table 1: Description of different DBI detection techniques based on Kirsch et al. [11]. An asterisk (*) in the
first column indicates a technique newly discovered during our research. All other techniques were adopted

from their 32 bit Windows versions presented in [36], except enter which is proposed by Bougacha 4.

We have developed a tool called jitmenot which employs 13 different DBI detection
mechanisms summarised in Table 1, 7 of which were adopted from their Windows specific
32 bit counterparts presented elsewhere [36] and one was proposed by Ahmed Bougacha 4.

4http://repzret.org/p/detecting-valgrind
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3.1 Code Cache / Instrumentation Artefacts

1 mov rcx , 0x0
2 mov rax , 0x27
3 s y s c a l l

(a)

1 mov [ l a b e l +1] , 0x0 ; c6 05 01 00 00 00 00
2 l a b e l :
3 mov eax , 0x1 ; b0 01

(b)

Figure 3: Code snippets presenting how an application can detect the presence of a DBI framework by
utilising ripsyscall (a) and smc (b) technique.

Note that in some cases it is not entirely possible to achieve an unambiguous categorisation.
In the following, we describe each of the proposed detection techniques in detail, while
we also suggest some mitigation techniques which will improve the stealthiness of the
instrumentation process. See Table 3 for an overview of which detection technique is able
to detect which of the DBI frameworks.

3.1 Code Cache / Instrumentation Artefacts
In the first category – code cache artefacts – we include anomalies introduced by the
fact that the executed code is not the original one. The presence of a JIT compiler does
introduce some irregularities in the normal program’s execution which can be detected by
the instrumented application.

3.1.1 Abusing the syscall Instruction (ripsyscall)

Independent of Pin, when executing any system call via the syscall instruction the
current instruction pointer value is copied to the rcx register [37], such that the kernel
can restore execution correctly via the sysret instruction. As operation of the OS’s kernel
happens transparently, user land perceives the syscall instruction to have the side effect
of setting the rcx register to the instruction right behind the syscall. The first method
involves the way the DBI frameworks emulate system calls. For example, when Pin has to
accomplish some task outside of the VM, such as forwarding a system call request from
the instrumented application or determining the next instruction trace to execute, the
register state of the instrumented application is saved and the VM is left.

However, this is not the case for an instrumented application executed within DBI.
Since, DBI frameworks wrap all system calls performed by the instrumented application,
they need to save the program’s register state before switching from the context of the
instrumented application to its own internal state. When re-entering the context of the
instrumented application, apart from the system call’s result in rax, no other side effects are
propagated back to the program. As a result, the rcx register observed by the instrumented
application stays constant across system calls. This discrepancy can be used as a detection
mechanism.

An example assembly code which illustrates this technique can be seen in Figure 3a.
Since Pin saves the register values before exiting the VM to emulate the system call, we
can assign a known constant (e. g. 0) to the rcx register. After executing any system call
(e. g. 0x27 - sys_getpid), we can examine the value of rcx register. If it contains exactly the
previously assigned constant and not the current Instruction Pointer (RIP), we conclude
that a DBI engine is present.

A straightforward way to mitigate this detection technique involves integrating in
the framework the propagation of all register values after a syscall to the application.
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Fortunately, in the case of Pin this is not bound to higher performance overhead. This is
the case because the framework manages the saved register in a context structure which
can be populated right after the syscall execution. Otherwise, the instrumentation tool
could also mimic this behaviour, by setting the correct RIP value in the rcx register before
the VM returns in the jitted code.

3.1.2 Self-Modifying Code (smc)

Yet another code cache artefact involves the way DBI frameworks handle Self-Modifying
Code (SMC) together with the fact that instrumentation is done at basic block granularity.
According to Intel, the Pin framework, for example, does attempt to detect manipu-
lations of the original code of the instrumented application by exposing the PIN_Set-
SmcSupport configuration option and a corresponding callback function TRACE_AddSmc-
DetectedFunction. Per default the instrumentation platform assumes that basic blocks
do not modify their own code. Therefore, in this case the analysis plugin programmer
has to manually trigger code cache invalidation upon receiving a SMC notification to
re-trigger the JIT compiler for the altered code. If the analysis plugin programmer does not
handle SMC, or does not invalidate the code cache, the instrumented application could
detect the presence of Pin as follows: First, the instrumented application marks its own
code as rwx by calling mprotect with prot set to PROT_READ | PROT_WRITE | PROT_EXEC.
Then the malicious tool modifies the immediate operand of a mov instruction from I1 to I0
(Figure 3b). Since Pin does not automatically invalidate the code cache only the original
code is modified, resulting in mov ending up with immediate operand I1. Therefore, in
the listing in Figure 3b, the value of al will depend on the fact whether the application is
being instrumented or not. If the same sequence is executed outside of a instrumentation
platform, the code change takes effect immediately and the mov instruction will use I1 as
immediate operand.

However, Pin specifies a dedicated command line argument, -smc_strict, not set
by default which when activated, the instrumentation platform starts monitoring for
basic blocks which modify their own code. When this is detected, Pin raises a code cache
invalidation notification followed by recompilation of already present code in the code
cache. Unfortunately, this invalidates our proposed DBI detection technique for Pin DBI
framework when the aforementioned command line argument is set. In conclusion, only
if the instrumentation platform monitors of all write accesses of the application to its own
text segment, it can reliably detect SMC.

3.1.3 Wrong Emulation of rdfsbase (fsbase)

When executed in a DBI environment the behaviour of some machine instructions may dif-
fer from their official specifications, e. g. the rdfsbase instruction which returns program’s
fsbase value. After starting the application, Pin saves the instrumented application’s
fsbase value in its context and restores it every time this value is necessary. This is the
case when we try to retrieve fsbase value by utilising the corresponding system call
(SYS_arch_prctl). Unfortunately, Pin fails to emulate the rdfsbase instruction imple-
mented in Intel processors since the Ivy Bridge generation and instead of the application’s
fsbase, the instruction returns Pin’s own fsbase. By comparing these two values, the
application can detect whether it is being instrumented. However, if the operating Pintool
detects the execution of rdfsbase instruction it could exchange it with the corresponding
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syscall, thus returning the correct fsbase value. It has to be noted, however, that the
underlying OS has to allow the use of the rdfsbase instruction, which is currently not the
case for Linux, making this detection approach less useful in practice.

In order to detect, if the rdfsbase instruction is correctly emulated we firstly registered
SIGILL signal-catching function. This function is triggered always when the CPU attempts
to execute an illegal instruction which is the case with rdfsbase when either it is not sup-
ported by the processor generation or not enabled by the kernel. In these cases, we cannot
make a decision whether the application is instrumented or not. In the end, if rdfsbase is
successfully executed by the processor, we compare the returned fsbase address with the
value returned by SYS_arch_prctl system call with specified ARCH_GET_FS parameter.

3.1.4 Wrong Emulation of enter (enter)

Some DBI frameworks, such as Valgrind, first translate the program into a processor-
neutral Intermediate Representation (IR), which is then instrumented by the analysis
plugin and in the end compiled to machine code. This implies that the DBI framework
is capable of emulating the whole instruction set of the processor. However, since some
instructions are less frequently used than others, DBI developers choose to either partially
or completely not support them. An example of such a case is the x86 enter instruction [37],
which creates a stack frame for a procedure. Its first operand defines the the size of the
dynamic storage in the stack frame, while the second operand specifies the lexical nesting
level (0 to 31). This instruction executes as expected in a non-instrumented environment.
However, when a program, instrumented by Valgrind, attempts to execute enter, a signal
is raised because this particular instruction is not implemented in the IR. By catching this
signal, an application can determine whether it is instrumented or not. Note that this
behaviour is not observed in Intel Pin since it does not rely on IR for instrumentation.

Similarly to the previous detection technique, we can register SIGILL signal-catching
function which is called when the execution of an illegal instruction is attempted. In order
to mitigate the enter detection mechanism, DBI frameworks have to either emulate it
correctly or the analysis plugin can again detect their execution and substitute the invalid
instructions with functionality preserving code. In the case of enter N, 0, this translates
to a typical function prologue: push rbp; mov rbp, rsp; sub rsp, N.

3.1.5 Neglecting No-eXecute Bit (nx)

W⊕X is an exploitation mitigation technique enabling the OS to mark writable pages
in memory as not executable. The consistent application of W⊕X denies an attacker the
ability to introduce own code into the address space of a program before transferring
the execution flow to it. As described in Section 2, Intel enforces this technique on their
x86 architecture by marking mapped pages in memory as not executable by setting a
No-eXecute (NX) bit. However, when the JIT compiler of a DBI framework fetches new
instructions for instrumentation, it does not check whether the source memory is marked
as executable; as long as the page is readable the JIT compiler will translate any data
present and emit executable assembly instructions. They are then written to the code
cache and executed by the VM. Note that all DBI frameworks we tested were vulnerable
to this problem. Clearly, this is a huge security issue, as this implies that any program
instrumented by a DBI framework in JIT mode effectively has W⊕X disabled.
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1 # define ASSEMBLY_SIZE 13
2 const unsigned char assembly [ASSEMBLY_SIZE] = {
3 0xE8 , 0x00 , 0x00 , 0x00 , 0x00 , 0x50 , 0xB8 ,
4 0x2A , 0x00 , 0x00 , 0x00 , 0x58 , 0xC3
5 } ;
6 const i n t page_size = getpages ize ( ) ;
7 unsigned char ∗ to_exec = malloc ( page_size ) ;
8 memcpy( to_exec , assembly , ASSEMBLY_SIZE) ;
9 asm v o l a t i l e ( " c a l l ∗%0" : : "m" ( to_exec ) ) ;

(a)

1 c a l l to_exec
2 to_exec :
3 push rax
4 mov eax , 0x2A
5 pop rax
6 r e t

(b)

Figure 4: Sample code (a) which attempts to execute assembly instructions (b) residing on a non-executable
page.

We utilised this fact as a detection technique in the following way: (1) Allocate a
new page on the heap without execute permissions and place valid code in it, (2) then
execute it. Without instrumentation, on any modern OS, a program trying to execute
code on a page without x permissions will result in a crash. Otherwise, if the program
is being instrumented, the program will be allowed to continue. This difference allows
us to determine whether an application is currently instrumented or not. An example of
this technique can be seen in Figure 4a, where we use a malloc call to allocate a page with
only read and write permissions (rw). Then we copy in this page valid x86 instructions
shown in Figure 4b which do not interfere with other parts of the program. Finally, the
program attempts to execute the code on the newly created page.

Generally, if it is possible to divert execution to a user-controllable buffer, an attacker
can place shellcode in it and the VM will execute it. This effectively violates the Isolation
property of DBI. Later, we present a real-world example of how this can be leveraged as
a fully working exploit. This classifies as a major vulnerability issue not only in Pin DBI
framework but also in all other DBI engines which we tested as can be seen in Table 3.
Nevertheless, introducing proper checks for correct memory page permissions before
fetching code from memory could resolve this issue. This can be accomplished either in
the JIT compiler or as a temporary fix integrated in the instrumentation platforms.

3.1.6 Real Instruction Pointer (ripfxsave / ripsiginfo)

This technique was already introduced by Falcón and Riva [36]. However, as detection
of the real rip also is a building block for attacks (against the DBI Isolation property)
described later in this thesis, we briefly summarise the techniques nevertheless.

In a nutshell, the DBI framework VMs execute only the translated and instrumented
code of the application residing in the code cache but never the original code in the
original text segment of the instrumented application. To maintain compatibility with non-
relocatable applications, Pin attempts to mask the VM’s rip with instrumented program’s
original rip value whenever necessary (e. g. directly reading the return address of a
function).

One technique for finding the real rip abuses the systems Floating Point Unit (FPU):
First, any FPU instruction (e. g. fldz) is executed. Afterwards, the FPU state is saved
using the fxsave instruction. This state includes the address of the most recently executed
FPU instruction, which is not masked by any instrumentation platform. A malicious
instrumented application can then compare this value to the (masked) value when directly
reading the rip register. If the values do not match, the application is being instrumented.
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The same can be achieved on Linux with the help of the OS: The sigaction system
call allows the calling process to examine and/or specify the action to be associated with
a specific signal. By setting the SA_SIGINFO flag in the sigaction structure, the provided
parameters to the signal-catching function are signal number, siginfo_t structure explain-
ing the reason why the signal was generated, and the third argument can be casted to an
object of type ucontext_t* referring to the receiving process’ context. If we execute any
floating-point instruction and then raise a signal (for instance by deliberately triggering a
segmentation fault), the context argument passed to the signal handler contains the state
of the FPU registers. By comparing these values with the corresponding rip, one can again
determine whether the program is being instrumented.

Similarly to the fsbase detection technique, we can again detect the execution of
fxsave and mask the saved RIP value with a valid value. On the other hand, this can be
also handled by the instrumentation platform.

3.2 Just-In-Time Compiler Overhead
The process of translating instructions performed by the JIT compiler introduces timing
side channels. In the following we sketch two possibilities to detect the presence of
instrumentation platforms by measuring the JIT compiler overhead that proved stable in
practice.

3.2.1 Branch Timing (jitbr)

One such side channel can be uncovered by repeatedly timing branch instructions which
will be explained in the following. First of all, Pin usually compiles and places in the
code cache more than one consecutive basic blocks, all terminated at an unconditional
control-flow changing instruction, which are together referred to as a trace. Each of the
generated traces consists of a single entry but multiple exits. More precisely, Pin assumes
which branches of the CFG are more likely to be executed and compiles the corresponding
basic blocks in one trace. Each of these compiled traces possesses a data structure called
context, which holds various information about it, e. g. register reallocations, liveliness.
Additionally, for performance reasons the addresses in the original code and in the code
cache of all valid compiled traces are kept in a traces hash table. On each return in the
DBI framework’s VM, when a new trace has to be fetched according to the instrumented
application’s RIP, the JIT compiler firstly searches in this hash table whether this trace has
already been compiled. If this is the case, the JIT engine determines if the considered trace’s
context can be reused; otherwise adjusts it according to the current state, e. g. generates
new mapping for reallocated registers. Alternatively, if the searched trace cannot be found,
Pin will prepare it for execution and place its address into the traces hash table. In the
end, the selected trace is executed by the VM and the whole process is repeated until
the instrumented application exits. Note that since hash table lookup is performed in
constant time, if the selected trace already resides in the code cache, the VM can directly
execute it and no computational time is lost in compiling and instrumenting the trace
again. Naturally, if the trace’s context needs to be regenerated, the time spent inside the
VM increases. Above all, these procedures are completed by Pin’s VM which involves
saving and restoring the corresponding state when exiting and again entering it.

Building on top of these observations, we developed a detection technique based on
the time elapsed between successive executions of traces before and belonging to a loop.
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......

; Attributes: bp-based frame

detect_jitbr proc near

var_90= qword ptr -90h
var_88= qword ptr -88h
var_80= qword ptr -80h
var_78= qword ptr -78h
var_38= qword ptr -38h

push    rbp
mov     rbp, rsp
push    r15
push    r14
push    r13
push    r12
push    rbx
sub     rsp, 68h
mov     rax, fs:28h
mov     [rbp+var_38], rax
xor     eax, eax
rdtsc
lea     r13, [rbp+var_90]
shl     rdx, 20h
or      rax, rdx
lea     rcx, [r13+8]
lea     rsi, [r13+50h]
mov     [rbp+var_90], rax
mov     rbx, r13
nop     word ptr [rax+rax+00h]

loc_2138:
rdtsc
shl     rdx, 20h
add     rcx, 8
or      rax, rdx
mov     [rcx-8], rax
cmp     rcx, rsi
jnz     short loc_2138

mov     r12, [rbp+var_80]
mov     rax, [rbp+var_88]
mov     r15, [rbp+var_78]
mov     rdx, r12
sub     rdx, rax
js      loc_2220

Figure 5: CFG of a function measuring the time which Pin needs to compile and instrument a trace. The
first trace which is compiled by the DBI framework is shown in green. In the end of the loop’s first iteration,
the execution flow continues in the middle of this trace. However, this requires the trace to be compiled again

(shown in red) since its start address cannot be found in the code cash.

In Figure 5, we can see the CFG of a function containing only a single loop, executing in
each iteration the rdtsc instruction, which returns the current number of processor cycles.
Additionally, a single rdtsc instruction is executed before entering the loop. All of the
results are saved in an array for future analysis. The first compiled and instrumented trace
(shown in green) is executed by the VM and the two rdtsc instructions, one before and
one in the loop body, are registered in the array (t0 and t1). When the RIP reaches the jmp
instruction, controlling the loop’s iterations, the VM has to take control over the execution
again and determine the jump target. As already introduced, this involves firstly, searching
in the traces hash table for already compiled target code and if no such trace exists then
the original binary’s code is compiled and instrumented. Although the target location
is already compiled and residing in the code cache, its start address is not contained in
the hash table. This is the case because the jump target’s code is contained in an already
existing trace which does not start with it. Therefore, the VM concludes that the searched
trace does not exist in the code cache and triggers the JIT compiler to prepare the necessary
trace for execution. When it is ready (shown in red), the execution can continue again
and the rdtsc instruction in the loop body is executed for the second time t2 (overall
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three processor cycles stamps). Next, when the jmp instruction of the loop is reached for a
second time, Pin has to decide again the jump target. However, this time the traces hash
table contains the target address, therefore, new compilation is not necessary, and the
same trace can be executed once more. Before that, Pin can decide to adjust the context of
the trace for optimisation reasons, e. g. change register relocation mappings to directly use
the original registers. Lastly, the loop body is executed without compiling new code or
changing any traces’ context while recording the processor cycles, ti for 3 ≤ i ≤ N , where
in this case N = 10 (Figure 5).

Figure 6: Measuring the processor cycles spent before the beginning and between each consecutive iteration
of the loop shown in Figure 5. The graph presents the corresponding values when dynamic instrumentation

is applied to the application (dashed) and when a DBI engine is not present. The data is given on a
logarithmic scale, where each value is an arithmetic mean of results collected from 5 separate executions.

In Figure 6 we plotted the difference ∆ij = tj − ti of consecutively measured processor
cycles ti and tj (i < j and overall ti ≤ tj) during the execution of the same function
presented in Figure 5 when the application is executed without the presence of a DBI
engine (blue), and when it is instrumented (green). In the first case, it can be clearly seen
that there are no significant differences between the noted processor cycles. Moreover,
we can see that the instruction cache of the processor is being utilised and the differences
between each successive loop body execution are constantly decreasing. On the other
hand, we can see that the execution profile of an instrumented application (Figure 6, green)
is completely different. The elapsed time between t0 and t1, ∆01 is shorter in comparison
to the time between t1 and t2, ∆12. This can be explained by the fact that the first two
executions of the rdtsc instruction happen in the same compiled trace and no VM switch
between them was necessary. As already explained, in the time between t1 and t2, the JIT
compiler has to prepare the jump target in the end of the loop body for execution which
involves considerable amount of time. Next, the difference ∆23 represents the time used
by Pin to adjust the reused trace’s context. Lastly, we observe that the behaviour of an
instrumented application for the rest of the function’s execution (∆ij , for i ≥ 3, j ≥ 4) does
not significantly differ from its not instrumented counterpart. Searching for this difference
allows us to directly adopt this approach as a detection technique for Pin DBI framework.
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3.2 Just-In-Time Compiler Overhead

Cycle No Instrumentation Pin Valgrind DynamoRIO QBDI

t0 1 826 508 576 347 902 267 879 282 563 250 082 3 664 452
t1 1 171 392 39 765 236 51 920 378 197 186 236 1 157 118
t1
t0

0.641 0.069 0.194 0.35 0.316

Table 2: Measuring the time t required for two consecutive loading and unloading attempts (cycles) of the
same common Linux OS libraries in an instrumented and not instrumented environment. The results are
given in processor cycles and each value is an arithmetic mean of results collected from 5 separate executions.

3.2.2 Libraries Loading (jitlib)

The presence of a JIT compiler and a dedicated code cache region in memory introduces
many irregularities in the execution of an application which helps us reveal the under-
lying DBI engine. We can unveil one such irregularity by measuring the time it takes a
certain number of libraries to be loaded and unloaded in memory. Falcón and Riva have
already observed that loading a large number of libraries requires much longer when the
application is instrumented [36]. However, this performance overhead depends on the
CPU computing power and cannot be reliably applied on different platforms. Therefore,
we improved their idea by measuring how the utilisation of a code cache can influence
the execution time of the instrumented application when performing multiple load-unload
cycles of the same libraries.

In our experiment we loaded and immediately after that unloaded 5 common Linux
specific libraries, namely libpthread.so.0, libutil.so, libcrypt.so, libselinux.so.1,
libpcre.so.3. This was done two consecutive times and additionally, for each of them
we measured its completion time (t0 and t1) in processor cycles and calculated the ratio
∆ = t1

t0
. If ∆ ≥ 1, then the second load-unload cycle lasted longer than or it was equal to

the first one, otherwise (∆ < 1) the second load-unload cycle completed faster than the first
one. The results of executing this approach in 4, previously introduced DBI frameworks, as
well as in a not instrumented environment, can be seen in Table 2. Overall, the second load-
unload cycle of the aforementioned libraries executes faster than the first one, however, we
observe a large discrepancy between these values when the application is instrumented
and not instrumented. The result is that loading again, previously loaded and unloaded
libraries in an instrumented environment is considerably faster than conducting this
under normal conditions, i. e. without the presence of a DBI framework. Especially when
instrumented with Pin, we observe a difference in the computed ratio of 0.1 between the
two cases. This is explained with the fact, that instrumentation frameworks do cache some
intermediate results and reuse them when possible, which is the case in this example. The
loaded libraries do not change during the time between the two load-unload cycles and
therefore, the result after them is always the same. This allows the DBI engine to reuse
the already compiled and instrumented binary instructions in the code cache dedicated
to loading and unloading the specified libraries. The DBI engine also detects that these
libraries still occupy instrumented application’s memory space and therefore do not load
them again. Note that unlike Falcón and Riva, we measure the relative difference in
number of processor cycles of two successful consecutive load-unload attempts involving
the same libraries and not the overall performance of common library loading process.

As expected, the JIT compiler does introduce performance overhead when instru-
menting a binary. Although this overhead directly depends on the CPU performance, we
introduced detection mechanisms which do not directly rely on this. Although DBI frame-

21



3.3 Environment Artefacts

works can improve their performance over time, the necessity to compile and instrument
code before execution introduces a considered amount of performance overhead which
will always lead to differences in application’s execution time when instrumented and not.
All OSs provide APIs for measuring the elapsed time between two reference points and
therefore, an application can utilise them to measure its performance. However, the DBI
framework could manipulate the results of all time related functions and return controlled
values, thus no significant difference between execution times in and outside of a DBI
environment exists [38].

3.3 Environment Artefacts
In this section we identify environmental artefacts introduced by DBI frameworks. By
this we refer to anomalies in the execution environment. For example, the memory layout
varies drastically with the usage of instrumentation platforms. Searching for DBI artefacts
such as strings or particular code patterns in memory reveals the presence of a DBI tool
inside the target process memory.

3.3.1 Pin Internal Environment Variables (envvar)

Firstly, Pin expects certain environment variables in order to run properly (e. g. PIN_INJEC-
TOR64_LD_LIBRARY_PATH). Because the framework spawns the instrumented process as its
own child, these inherited environment variables can still be found in the instrumented
application’s memory. Searching for them can therefore, expose the underlying JIT engine.
Note that in the case of Pin, this is an issue with current implementations as the variables
could be cleaned up during the initialisation process.

3.3.2 Page Permissions and Code Patterns (vmleave / mapname / pageperm)

A side effect of the JIT engine is the presence of pages that are marked simultaneously
as readable, writable, and executable (rwx). The compiler needs to write in memory the
already compiled instructions which are then executed by the VM. Therefore, this memory
region, called Code Cache, has to be marked as simultaneously executable and writable.
It is uncommon for a program to have any memory regions marked as rwx, hence a
high number of memory pages with rwx permissions is an indication of instrumentation
framework presence. An attacker can use this knowledge to scan the address space for such
pages. Knowing that rwx memory is not present in a particular binary this discrepancy
reveals the presence of the JIT compiler’s code cache.

Additionally, an attacker can scan the whole memory for mapped pages and compare
names of memory mapped files with names related to the DBI framework (e. g. pinbin for
Pin). Moreover, as the instrumented application and the analysis plugin share one address
space, the full implementation of the instrumentation platform has to be present as well.
For example, an attacker can search for specific code patterns such as the characteristic
implementation of the transition between the instrumented application and the analysis
plugin (VMLeave). This code sequence is unique because it saves the current VM context
on the stack and restores the jitted application’s registers, generating assembly code that
can easily be recognised.

However, Pintools can monitor every attempt to read memory conducted by the instru-
mented application and detect if it tries to read pages belonging to the instrumentation
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3.4 Discussion

platform. By such an attempt, the Pintool can alter the results, e. g. although the searched
memory page is allocated the result received by the application is NULL [38].

Technique Type Pin Valgrind DynamoRIO QBDI

jitbr CO E E E 7
jitlib CO E E E 7
pageperm EA E E E E
vmleave EA E 7 7 E
mapname EA E E E 7
smc CA E* E 7 E
ripfxsave CA E E 7 E
ripsiginfo CA E E E E
ripsyscall CA E 7 E E
nx CA E E E E
envvar EA E E E 7
fsbase CA E – E 7
enter CA 7 E 7 7

Table 3: Evaluation of detection mechanisms on different DBI frameworks showing whether a detection
mechanism can reveal the corresponding DBI’s presence (E) or not (7). A result indicated by an asterisk (*)

shows that it is valid under some conditions. Table is based on Kirsch et al. [11].

3.4 Discussion
In Table 3, we present an evaluation of all detection mechanisms studied in this thesis
on different DBI frameworks. In the following, we discuss some observations based on
the results in this table. Generally, all of the examined DBI frameworks in our research
were detected by the pageperm, ripsiginfo, and nx techniques. As already discussed, the
necessity of pages where code can be simultaneously written and executed is an insepara-
ble part of the DBI frameworks’ design. Similarly, the original code of the instrumented
application is never executed but only copied to some other (writable and executable)
region in memory where it is instrumented and later executed. Therefore, the DBI frame-
work cannot completely hide that the value of the instrumented application’s RIP is not
contained in its original text segment address area. All of these detection techniques are
based on DBI framework’s common characteristics. Nevertheless, during our research
we did not expect that all of the tested DBI engines do not verify whether the instruction,
which the RIP is pointing to, resides on a page, marked as executable. Instead of raising a
signal, the DBI framework interprets data as valid instructions, which are then fetched by
the JIT compiler, instrumented and executed by the VM.

Next, SMC proves to be challenging to be detected by the DBI engine because it
requires constant monitoring of the instrumented application’s writing attempts. In some
cases, next to other approaches instrumentation platforms try to utilise different heuristics
to detect SMC, e. g. Pin monitors mprotect calls. In our tests only DynamoRIO and Pin
(only when executed with the -smc_strict command line parameter) recognised correctly
the instrumented application’s attempt to modify its own code.

Finally, the introduced JIT compiler overhead can serve as an indication that the
application is executed in a DBI environment. Additionally, the DBI framework may not
be able to emulate some processor’s instruction set correctly. For example, Valgrind is
not able to translate in its IR language neither rdfsbase, nor enter instructions which
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3.5 Summary

terminates program’s execution by raising a SIGILL signal. Note that fsbase technique
solely considers the case where the returned fsbase value from the rdfsbase instruction
and SYS_arch_prctl system call do not match. In the case of Valgrind, this was not
possible since executing the rdfsbase instruction interrupts instrumented application’s
execution and the test cannot continue. To conclude, we also discovered that many DBI
engines can be fingerprinted by: searching for specific code patterns, set environment
variables or mapped files’ names.

3.5 Summary
We proposed 13 methods to detect the presence of a DBI engine divided in three categories,
namely Instrumentation Artefacts, Compiler Overhead, Environment Artefacts. As one
can see, an instrumented application can notice whether it is currently being executed in
a DBI environment. By nature, JIT compilers cause a lot of noise which is not only hard
to disguise but trying to do so introduces even more irregularities in the instrumented
program execution [38]. It follows that, the requirement R4 (Stealthiness) which is essential
for security applications such as malware analysis cannot be hold by DBI frameworks.
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4 Isolation

After discussing detectability of DBI frameworks, the following section focuses on the
methods and possibilities to escape from and consequently evade the instrumentation.

In the original work describing Pin [6] in Section 3.3.1 the authors state that the in-
strumented application’s code is never executed – instead it is compiled (from machine
instructions to the same kind of machine instructions) and executed together with the anal-
ysis plugin’s procedures within a custom virtual environment (the Pin VM). All executed
machine instructions reside in the VM (code cache) and the effect of any instruction cannot
escape from the VM region. Like other VMs, the Pin framework manages the instrumented
program’s instruction pointer and translates each basic block of the original code lazily
(i. e. when necessary). Two properties make Pin subject to attacks compromising isolation:
First, the VM may and will reuse already compiled code because of optimisation benefits.
Second, Pin does not employ any integrity checks of already translated instructions in
the code cache. Therefore, we can alter already executed instructions in memory, as they
(comfortably) reside on pages marked rwx by the instrumentation platform. Experimental
evidence from Section 3 indicates that the code cache implemented by other DBI tools
behaves in accordance with Pin’s code cache. However, we target the DBI implementation
of Pin on x86-64 Linux in the following sections.

For this we distinguish two different attacker models, and describe an escaping mech-
anism suitable for each.

A1 Control of Code and Data This is the most potent attacker. She can freely specify
which code is executed in the instrumented application and is able to freely in-
teract with the application while instrumented. In reality, such an attacker would
craft a malicious binary in the hope that an analyst would execute the binary in a
instrumentation platform.

A2 Control of only Data This is the weaker of the two attacker models. In this case, an
attacker only possess copies of the instrumented application, instrumentation plat-
form, analysis plugin, and all depending dynamic libraries. However, this attacker
is also able to freely interact with the application containing memory corruption
vulnerabilities while executed in an DBI framework. In practice this is the case
when some binary hardening policy implemented using DBI gets attacked over the
network.
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4.1 Escaping from Pin’s Instrumentation using Direct Code Cache Modification

HTTP/1.1 301 Moved Permanently
Server: nginx/1.4.6 (Ubuntu)
Date: Mon, 30 Oct 2017 01:33:37 GMT
Content-Type: text/html
Content-Length: 193
Set-Cookie: V\xff
Connection: keep-alive
Transfer-Encoding: Chunked
Location: https://pwningse.rv/

-fffffdc6
<shellcode><0x230 bytes padding><BBBBBBBB>\x7c\x9b

RAX  0x0
RBX  0x5555555c71e5 ◂— /* ' [following]' */
RCX  0x7ffff6cb4061 ◂— cmp    rax, -0x1000
RDX  0x200
RDI  0x3
RSI  0x7fffffffd150 ◂— <shellcode>
R8   0x7fffffffcfb0 ◂— 0x383
R9   0x0
R10  0x0
R11  0x246
R12  0x5555557ee1b0 ◂— /* 'https://' */
R13  0x7fffffffdf00 ◂— 0x2
R14  0x0
R15  0x0
RBP  0x4242424242424242 /* 'BBBBBBBB' */
RSP  0x7fffffffd368 ◂— 0x55555557f77d9b7c
RIP  0x55555557af7c (skip_short_body+657) ◂— ret

0000 rsp 0x7fffffffd368 —▸ 0x55555557f77d9b7c
0008     0x7fffffffd370 ◂— 'V\xc3\xbf'
0010     0x7fffffffd378 <— 0x555560200
0018     0x7fffffffd380 —▸ 0x7fffffffd7b0 —▸ 0x7fffffffdad0 —▸ ...
0020     0x7fffffffd388 —▸ 0x55555557ec6a (gethttp+3468)
0028     0x7fffffffd390 ◂— 0x0
...
0038     0x7fffffffd3a0 —▸ 0x555555806420 —▸ ...
0040     0x7fffffffd3a8 ◂— 0x0
0048     0x7fffffffd3b0 —▸ 0x7fffffffdd04 ◂— 0x0
0050     0x7fffffffd3b8 —▸ 0x7fffffffd9b0 ◂— 0x0
0058     0x7fffffffd3c0 —▸ 0x555555806810 —▸ ...
...
0068     0x7fffffffd3d0 ◂— 0x0
... 
0090 rsp 0x7fffffffd3f8 —▸ 0x7fffffffd370 ◂— 'V\xc3\xbf'
0098     0x7fffffffd400 —▸ 0x555555807fb0 ◂— /* '\nConnect' */

Malicious HTTP Response

Register Contents

Stack State

0x555555579b7c <request_send+881>: add    rsp,0x78
0x555555579b80 <request_send+885>: pop    rbx
0x555555579b81 <request_send+886>: pop    rbp
0x555555579b82 <request_send+887>: ret

0x7fffffffd370 <cookie>: push   rsi
0x7fffffffd371 <cookie+1>: ret
0x7fffffffd372 <cookie+2>: mov    edi,0x00

Stack Lifting Gadget

Primitive for jmp rsi on the (executable) Stack

Δ = 0x88

1.3

2.

3.

4.1

4.2

5.

!

1.1

1.2

0x00000000  loc_A0:
0x00000000  fldz  jmp loc_B0
0x00000002  fxsave [rax]
0x00000005  jmp short loc_A1

Code Cache

0x00000007  loc_A1:
0x00000007  mov rdx,[rax+0x8]
0x0000000B  mov word [rdx], <code>
0x00000010  jmp short loc_A0

0x55000000  loc_B0:
0x55000000  mov rsp,[r15+0x40]
0x55000004  mov rax,[r15+0x3d8]
0x5500000b  mov [fs:0x0],rax
0x55000014  jmp loc_C0

.text Section

0x55001000  loc_C0:
0x55001000  <unsandboxed code>
0x55001000  ...

1. 2.

3.

Figure 7: A minimal program escaping from the Pin VM. Figure is based on Kirsch et al. [11].

While detectability always required an attacker of type A1, we show that it is even
possible for an attacker of type A2 to escape from the instrumentation if the attacked
program contains what is commonly referred to as a write-where-what vulnerability.

4.1 Escaping from Pin’s Instrumentation using Direct Code
Cache Modification

First, we describe the escaping technique for the more potent attacker A1 whose goal is to
execute arbitrary code without Pin’s instrumentation engine being able to embed callbacks
notifying the analysis plugin. The existence of the just-in-time compilation allows us to
first execute a basic block in order to allow the Pin VM to translate its assembly code
and place its address in an internal hash table to find it later. Then the instrumented
program can find the translated version of the basic block in the code cache (using the real
instruction pointer detection techniques described in the previous section). It can then
modify the jitted code arbitrarily. Once the execution flow reaches the modified basic block
a second time, Pin will effectively execute whatever an attacker placed there. Figure 7
depicts the steps needed.

Prior to escaping from the VM, one first has to use any of the techniques discussed
in Section 3 to find the real rip value (Block loc_A0 in Figure 7 showing the ripfxsave
technique). As expected, Pin executes these instructions within its own code cache. As
a result, at the end of block loc_A0, rax now points to the FPU context storing a pointer
to the beginning of loc_A0. Then (step 1.), execution is redirected to block loc_A1 using
a jmp instruction, where an attacker can patch out the first instruction of loc_A0 and
replace it with a control flow change eventually reaching loc_B0 (step 2.). Then, when
the control flow reaches loc_A0 for the second time, the modified instructions placed
there will be executed, now redirecting execution to block loc_B0 residing in the original
code (step 3.). This does not trigger any page fault, hence the instrumentation engine does
not get notified of the breach happening in the VM. To maintain ABI compatibility to
arbitrary code embedded into the malicious executable, block loc_B0 needs to restore the
rsp and fsbase registers, which, due to the code generation strategy of the JIT compiler
are conveniently accessible via a structure pointed to by register r15. Now, execution
can move on to any arbitrary code loc_C0 in the original executable prepared by the
attacker – as all pages are mapped executable there is no mechanism allowing Pin to
re-trigger the JIT compilation process to embed its instrumentation hooks. In fact, from
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4.2 Escaping from Pin’s Instrumentation using an Existing Memory Corruption

(a)

(b)

Figure 8: Sample output of a POC sandbox escape program instrumented by Pin with a Pintool which
provides information about all executed system calls. In (a) is shown the normal program’s execution, while

in (b) it escapes the DBI sandbox.

Pin’s perspective the application is still executed in the VM and awaits to regain control
again, which never happens.

To demonstrate this sandbox escape, we configure a Pintool (SandboxPinTool) to track
all system calls executed by the instrumented application and print basic information
about them, e. g. syscall number, parameters. Then we instrumented with this Pintool
our POC program (escape) which implements the ideas behind the A1 model. The appli-
cation executes sys_getpid system call, 39 in x86-64, and exits. Additionally, all of the
application’s console output is prepended with -- Application --. A sample execution can
be seen in Figure 8. In the upper console output, we instrument the application without
triggering the sandbox escape mechanism. As expected, all executed system calls are
recorded by the Pintool and after the instrumented application finishes its execution the
Pintool outputs Fini PinTool indicating the end of instrumentation and termination of
Pin. We can clearly see, that the executed sys_getpid system call is registered by the
Pintool (0x56531405a6ff: 39 (<parameters>) indicated by a read enclosure in Figure 8a). In
Figure 8b, we can see the output of the same application instrumented by the same Pintool
but this time we have activated the sandbox escape mechanism. It is apparent that none of
the system calls are detected after the escape.

4.2 Escaping from Pin’s Instrumentation using an Existing Mem-
ory Corruption

As previously stated, it is also possible under certain circumstances to evade the instrumen-
tation if only an attacker of type A2 is present. Escaping the Pin sandbox in Linux without
necessarily knowing any code cache address is also possible: We measured the relative
offsets between all mapped pages in different executions of an application instrumented
by Pin. As it can be seen in Figure 9, the offset between libc and the code cache, as well as
pinbin (main Pin binary) and Pin’s own stack is constant. Leaking addresses from any of
these code regions therefore allows us to reliably find the other mappings. Consequently,
we can utilise all gadgets present in the code basis to build ROP chains, or directly write
shellcode using a write-what-where vulnerability into the code cache. This is due to the
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4.2 Escaping from Pin’s Instrumentation using an Existing Memory Corruption

fact that, as already explained, the Pin framework copies itself into the application’s mem-
ory by allocating memory using mmap. As pointed out by Kirsch et al., the addresses of
consecutively allocated memory allocations returned by mmap are predictable (i. e. relative
distances remain constant) in Linux [39]. Thus, all required information can be calculated
a priori based on known binaries of Pin, the analysis plugin, the instrumented application,
and all dynamic link libraries (Figure 9).
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Figure 9: Colour matrices showing memory regions sharing random ( / ) or constant ( / / )
distances with each other for applications instrumented by Linux (above right) and Windows (down left)
version of Pin. The region names in red are additional components added by the instrumentation framework

while in black are presented the program’s original mapped files. Figure is based on Kirsch et al. [11].

Similarly to the already discussed A1 model, we need a function f which has to fulfil
two major requirements: (1) it is invoked at least twice during the whole instrumented
application’s execution process, and (2) does not trigger the DBI framework’s code cache
invalidation mechanism. Moreover, the attacker must be able to alter the compiled func-
tion’s binary instructions residing in the code cache before its last execution. If f violates
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4.2 Escaping from Pin’s Instrumentation using an Existing Memory Corruption

1 # include < s t d l i b . h>
2 # include < s t d i o . h>
3 # include <unistd . h>
4 i n t main ( i n t argc , char∗∗ argv ) {
5 char ∗ptr = malloc (0 x 3 f f 0 0 0 ) ;
6 i n t o f f s e t = 14682250 ;
7 read (STDIN_FILENO , ptr + o f f s e t , 512) ;
8 return 0 ;
9 }

(a)

1 add [ r d i +0x4 ] , 0 x1 ; 83 47 04 01
2 r e t ; c3

(b)

Figure 10: Minimal C program attempting to overwrite instrumented code in the code cache with arbitrary
instructions (a) and assembly code of rtld_lock_default_lock in glibc 2.26-0ubuntu2 (b).

any of these two requirements the discussed A1 will not work. For instance, if f invalidates
its instrumented version in code cache e. g. utilises SMC, the instrumentation platform has
to regenerate it, effectively overwriting attacker’s injected code. For example, one suitable
function is rtld_lock_default_lock (Figure 10b) contained in the dynamic loader library
of the Linux OS. Some compilers, such as GCC, allow the declaration of constructors and de-
structor functions [40] which can be utilised to initialise essential program structures, e. g.
libraries. With this feature, the functions defined as constructors would be executed before
the function main starts, and the destructors would be invoked after main has finished exe-
cution. In fact, rtld_lock_default_lock manages the execution of constructors, as well
as destructors, thus it is invoked at least twice during the course of program’s execution.
Additionally, it does not trigger recompilation of its instrumented code which satisfies our
two requirements. As discussed, by knowing a convenient address in program’s memory,
e. g. the address of memory allocated on the heap, an A2 attacker can calculate the address
of rtld_lock_default_lock in the code cache and inject her malicious code there before
the main function has finished its execution. Unfortunately, the offsets between the afore-
mentioned pages are not constant (Figure 9, down left) in consecutive executions of Pin’s
Windows OS version effectively rendering this attack as not possible.

We implemented a tool which automatically determines the offset between
rtld_lock_default_lock’s address in code cache and a known heap address by given
Pin version, Pintool, and all depending dynamic libraries. The output is a minimal C
program, which can be compiled by the user. An example is shown in Figure 10a. It
firstly, allocates memory on the heap and uses this address to calculate the location of
rtld_lock_default_lock in the code cache. Finally, it awaits maximally 512 bytes of in-
structions to be written there. When instrumented by the previously specified Pintool, the
program executes the injected instructions before the execution flow reaches its end. We
tested this approach successfully by escaping from a classic implementation of a shadow
stack in Pin on Linux by Davi et al. [24]. Generally, it manages a separate stack that shadows
the program’s call stack. In the function prologue, its return address is stored to both
the call stack and the shadow stack. In the function epilogue, a function loads the return
address from both the call stack and the shadow stack, and then compares them. If the
two records of the return address differ, then a CRA is detected and program’s execution
is terminated. Since no return pointer is corrupted in the presented technique, the shadow
stack cannot detect the malicious diversion of the execution flow. Consequently, this ren-
ders the considered binary hardening technique ineffective in this scenario because of the
utilisation of instrumentation platforms.
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4.3 Summary

4.3 Summary
Since Pin does not monitor its code cache for external changes and does not restrict its
execution to known memory locations, one can alter the instrumented process’ memory
in any suitable way. Moreover, the address of the code cache in the Linux version of
Pin can be calculated by using any leaked address from other similarly created memory
region. Therefore, if the binary contains a function that is executed twice and after its
first invocation, a malicious user overwrites this function’s instructions in the code cache,
they are able to gain full control over the application. Unfortunately, such a function
(rtld_lock_default_lock) is contained within the dynamic loader, a core component of
the Linux OS.
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5 Increased Attack Surface

Previously we have shown that DBI frameworks are both detectable and escapable ren-
dering them as not suitable for binary hardening or malware analysis. In this section,
we show how implementing security mechanisms enforced by executing a given COTS
binary in a DBI environment even introduces more possibilities to exploit already present
bugs (i. e. attack surface is increased instead of decreased). To support this claim we discuss
an example where a vulnerability that is not trivial to exploit during normal execution
becomes exploitable when executed within a DBI framework interacting with an attacker of
type A2.

5.1 The Return of Aleph One

During the study of detectability properties of instrumentation platforms we already
pointed out that they fail to check the permissions of the code that is to be processed by
their JIT engines. This means any data in memory can (and will) be translated to executable
instructions if reached by the control flow. This transfers us back to the dawn of buffer
overflows and shellcode execution era. As a simple example, we can run an application
which jumps to shellcode on the stack. Normally, because of the set NX bit in the page
tables of the stack, the program would crash as soon as the instruction pointer points to
an address on the stack. However, instrumenting the same binary with Pin does not crash
the application. In fact, the execution continues and the program opens a shell.

5.2 Turning CVE-2017-13089 to a Code Execution Bug with the
Help of Intel Pin

To underline the exploitability claim, we have implemented a POC binary (PwIN) that
exploits an existing CVE vulnerability (CVE-2017-13089, cf. [41]) that is not easily exploited
when executed in a normal environment. CVE-2017-13089 is a bug in wget versions older
than 1.19.2 found in http.c:skip_short_body(). The bug itself is described in more
detail in the next section. Without Intel Pin the strongest attack (known to us) results in a
1
16 probability of leaking an arbitrary file stored on the victim to the server (see below).
We will discuss how the same bug can be escalated to full code execution if the victim is
instrumented using Intel Pin.
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5.2 Turning CVE-2017-13089 to a Code Execution Bug with the Help of Intel Pin

HTTP/1.1 301 Moved Permanently

Server: nginx/1.4.6 (Ubuntu)

Date: Mon, 30 Oct 2017 01:33:37 GMT

Content-Type: text/html

Content-Length: 193

Set-Cookie: V\xff

Connection: keep-alive

Transfer-Encoding: Chunked

Location: https://pwningse.rv/

-fffffdc6

<shellcode><0x230 bytes padding><BBBBBBBB>\x7c\x9b

RAX  0x0

RBX  0x5555555c71e5 ◂— /* ' [following]' */
RCX  0x7ffff6cb4061 ◂— cmp    rax, -0x1000
RDX  0x200

RDI  0x3

RSI  0x7fffffffd150 ◂— <shellcode>
R8   0x7fffffffcfb0 ◂— 0x383
R9   0x0

R10  0x0

R11  0x246

R12  0x5555557ee1b0 ◂— /* 'https://' */
R13  0x7fffffffdf00 ◂— 0x2
R14  0x0

R15  0x0

RBP  0x4242424242424242 /* 'BBBBBBBB' */

RSP  0x7fffffffd368 ◂— 0x55555557f77d9b7c
RIP  0x55555557af7c (skip_short_body+657) ◂— ret

0000 rsp 0x7fffffffd368 —▸ 0x55555557f77d9b7c

0008     0x7fffffffd370 ◂— 'V\xc3\xbf'
0010     0x7fffffffd378 <— 0x555560200

0018     0x7fffffffd380 —▸ 0x7fffffffd7b0 —▸ 0x7fffffffdad0 —▸ ...

0020     0x7fffffffd388 —▸ 0x55555557ec6a (gethttp+3468)

0028     0x7fffffffd390 ◂— 0x0
...

0038     0x7fffffffd3a0 —▸ 0x555555806420 —▸ ...

0040     0x7fffffffd3a8 ◂— 0x0
0048     0x7fffffffd3b0 —▸ 0x7fffffffdd04 ◂— 0x0
0050     0x7fffffffd3b8 —▸ 0x7fffffffd9b0 ◂— 0x0
0058     0x7fffffffd3c0 —▸ 0x555555806810 —▸ ...

...

0068     0x7fffffffd3d0 ◂— 0x0
... 

0090 rsp 0x7fffffffd3f8 —▸ 0x7fffffffd370 ◂— 'V\xc3\xbf'
0098     0x7fffffffd400 —▸ 0x555555807fb0 ◂— /* '\nConnect' */

Malicious HTTP Response

Register Contents

Stack State

0x555555579b7c <request_send+881>: add    rsp,0x78

0x555555579b80 <request_send+885>: pop    rbx

0x555555579b81 <request_send+886>: pop    rbp

0x555555579b82 <request_send+887>: ret

0x7fffffffd370 <cookie>: push   rsi

0x7fffffffd371 <cookie+1>: ret

0x7fffffffd372 <cookie+2>: mov    edi,0x00

Stack Lifting Gadget

Primitive for jmp rsi on the (executable) Stack

Δ = 0x88

1.3

2.

3.

4.1

4.2

5.

!

1.1

1.2

Figure 11: Control flow and state changes of wget when attacked by a malicious server. The last control
transfers (4.2 in purple and 5. in red) mark the transitions that are enabled by the usage of Pin. Under
normal circumstances, the program would crash as the buffers on the stack containing the malicious

shellcode would not be executable. Figure is based on Kirsch et al. [11].

5.2.1 Description of the Bug

The vulnerable function http.c:skip_short_body() in wget is called when processing
HTTP redirects together with HTTP chunked encoding. The chunk parser uses strtol()
to parse each chunk’s length into a variable of type long. Prior to copying the chunk’s
contents into a buffer on the stack, the code validates that the chunk size specified in
the HTTP request fits into the buffer, forgetting to ensure the supplied value is actually
a positive number. The code then tries to skip the chunk in pieces of 512 bytes but ends
passing the negative length to connect.c:fd_read(). Unfortunately, fd_read()’s length
argument is of type int, thus the high 32 bit of the length variable are discarded. Therefore,
values in the range 0xffffffff00000000 to 0xffffffffffffffff pass all checks while
the truncation to a 32 bit value still allows an attacker to control the length of the read
chunk and to overflow the dlbuf variable on the stack.

5.2.2 Exploitation of the Bug

The bug allows for a continuous write of arbitrary data on the stack. Due to the absence
of stack canaries, the saved return address on the stack can be compromised. However,
without the knowledge of the current state of ASLR, there is not much an attacker can do,
as she does not know any pointer pointing into valid memory (the binary is compiled as
position independent executable). Consequently, the only remaining option to continue
exploitation is a partial pointer override. In this technique, an attacker abuses the fact that
ASLR operates at a page (4096 = 212 bytes) granularity. Therefore, the lowest 12 bits of
any object within the address space are deterministic. As a consequence, an attacker can
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5.2 Turning CVE-2017-13089 to a Code Execution Bug with the Help of Intel Pin

now trade the number of reachable jump targets reachable by a ret for exploit reliability.
For example, a two-byte partial pointer overwrite needs to guess 2 · 8 − 12 = 4 bits of
randomness, allowing to transfer control to a region sharing the same 22·8 = 65 536 bytes
region with the original return address. Automatically evaluating all targets within this
region using dynamic analysis does not unveil any target where an attacker could trivially
obtain arbitrary code execution. The only noteworthy effect that can be observed is when
targeting body_file_send(), as register allocation (Figure 11) matches the signature of
this function with rsi pointing to attacker controlled data specifying a file name to transfer
from the client to the server.

However, when running in context of Intel Pin we can inject and execute shellcode
situated in non-executable memory regions, reducing the challenge of achieving code
execution to just having to find a reliable mechanism to jump to a pointer to data we
control. Our full exploit chain is visualised in Figure 11: Fortunately, when reaching the
end of the skip_short_body() function the rsi register (step 1.1) contains the address of
dlbuf (controlled by the attacker). However, there are no convenient gadgets reachable
with a partial overwrite on the return address which may divert the code execution to
the address contained in rsi. We remedy this by injecting our own jmp rsi gadget into a
buffer that we can divert control to using the partial overwrite in step 1.3. As expected,
before reaching the return pointer on the stack, we inevitably have to load an invalid
pointer to rbp register (step 1.2) which fortunately, does not negatively influence our
future actions. We can reach a stack lifting gadget with a partial overwrite (step 2.) that
increments the stack pointer by ∆ = 0x88 bytes (step 3.). The new stack pointer location
now points to a pointer to the UTF-8 encoded value of the contents of the Set-Cookie
header of the HTTP response. At this point the ret will transfer control to an attacker
controlled buffer (steps 4.1 and 4.2) but the UTF-8 encoding constrains the shellcode in an
uncomfortable way. Luckily enough, the string V\xff is encoded to V\xc3\xbf which is
perfectly valid UTF-8 and disassembles to push rsi; ret at the same time (UTF-8 encodes
all bytes > 0x7f). As rsi still points to (now unconstrained) attacker controlled shellcode
from the HTTP response body residing in dlbuf, this control transfer (step 5.) is the last
step in achieving code execution. This attack succeeds with a probability of 1

16 , due to the
partial pointer override used in the first step.

5.2.3 Proof Of Concept

An example of this exploit can be found in the pwin folder within the released materials
related to this thesis. The provided malicious python server (pwn.py) implements the
aforementioned exploitation technique. It listens for connections by default on localhost,
port 55555. Connect to it with an instrumented version of wget, older than 1.19.2 (also
found in the same folder). Since the presented attack relies on a partial pointer override
used in the first step with a probability of 1

16 , it may happen that the execution flow is
redirected to an invalid state. Therefore, the instrumented instance of wget may crash
raising a SIGSEGV signal. We have successfully tested instrumenting wget, version 1.19.2,
with RipRop, 64 bit window size Pintool developed by Tymburibá et al. [28] who kindly
gave us access to its source code. As described in Section 2, the Pintool detects unusually
high rate of consequentially executed short basic blocks ending with a ret instruction.
Since in our exploit sequence the only considerably short basic block is the stored in the
Set-Cookie header containing push rsi; ret, this does not qualify as an indication of a
ROP attack according to Tymburibá et al.’s approach. Unfortunately, our implementation
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5.3 Summary

of Davi’s et al. [24] shadow stack as a Pintool does recognise the corrupted return pointer
in http.c:skip_short_body() function and terminates the execution immediately.

5.3 Summary
The ability to execute data represents a clear benefit for an attacker and a major security is-
sue. This threat was almost completely avoided by the introduction of the W⊕X technique
by CPU vendors. However, we can clearly see that current DBI engines’ design does not
correctly enforce W⊕X re-establishing shellcode attacks known from the last century as a
viable attack vector.
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6 Discussion

In this section we present research which influenced this thesis by its approaches and
results. Additionally, we discuss some possibilities for extending its scope and resolving
further substantial problems. In the end, we summarise our results and form a final
opinion about the utilisation of DBI engines in the security area.

6.1 Related Work
Some research has already been conducted in the field of anti-emulation and anti-
virtualisation techniques which lies in direct connection to our Pin DBI detection proce-
dures detailed in Section 3. First of all, Falcón and Riva presented at RECon 2012 conference
some possibilities of how a program may detect whether it is currently being instrumented
by Pin DBI framework [36]. Unlike this thesis where we concentrated mainly on Linux
x86-64, they focused on the 32 bit Windows version of Pin and developed a tool which
implements all of the proposed detection mechanisms. Beside code and data fingerprint-
ing of the main Pin binary (pinvm.dll), the authors have also proposed analysing the
introduced overhead of the JIT compiler, as well as finding the real RIP of the application.

In our work, we have successfully adapted some of Falcón and Riva’s approaches in
Linux x86-64. Unfortunately, some of their research was based on unintentional bugs in
Pin which were fixed in later versions or the utilised detection techniques were specific for
the Windows OS family and not compatible with Linux. For example, the instrumented
process in Windows is a child process of the Pin binary (pinbin) throughout its whole
execution. By contrast, in Linux Pin employs the ptrace mechanism to spawn the instru-
mented process as its child, copy itself into the new process’ memory and continue its
execution there, while the parent process exits. Hence, the instrumented program appears
to have no relation to the Pin framework. As a result, we cannot check whether the process’
parent is the Pin binary and therefore, we cannot detect whether it is being instrumented
or not.

Determining whether an application is running in a virtualised environment is cru-
cially important for split-personality malware [42], too. In these cases, the malware is split
into benign and malicious parts, and then it misleads security scanners by showing only
benign behaviour within an analysis environments. In order to achieve this, the malicious
program attempts to find any inconsistencies with the current system compared to a real
machine. As seen in Section 3, there exist many different techniques to achieve this goal.
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6.1 Related Work

Chen et al. studied malware samples from which 40% exhibit less malicious behaviour in
debugging environments. They have also introduced a taxonomy that captures essential
techniques for distinguishing between production systems and monitoring systems, which
typically operate in virtualised and debugger environments. The root categories include
hardware components (e. g. presence or absence of devices), execution environment (e. g.
Windows API debugger flag), application (e. g. environment specific tools), and behaviour
(e. g. differences in performance). One noteworthy execution environment artefact is “Red
Pill” [43], which detects that the address of the interrupt descriptor table is different from
the native Windows value when the system is virtualised. Additionally, Miramirkhani et al.
considered system’s wear-and-tear [44] as a sandbox identification method, which in-
evitably occurs on real systems as a result of normal use, e. g. entries in the DNS resolve
cache or number of temporary system files.

Split-personality malware is also common in Android mobile applications since it has
higher chances of staying undetected by automated Anti-Virus Engines (AVEs) and later
could be uploaded to the application store. Maier, Protsenko, and Müller implemented an
application which gathers information about AVEs and Android sandboxes [45]. Then they
used it to develop a POC samples that use a combination of fingerprinting and dynamic
code loading to enter the Google Play Store. For example, the authors discovered that
most of the VMs are based on a common Android hardware emulator called Goldfish. In
addition, all applications tested with Google Bouncer, an automated AVE which scans all
new applications before they are uploaded to Google Play Store, do not have connection
to the Internet. Therefore, they designed an application which loads dynamic code (a
common practice in many benign Android apps) with malicious intentions only when
a certain command from a C&C server is received. Because this server is unreachable
when the application is tested in Google Bouncer, the malicious part of the code is never
loaded or executed and therefore, it is marked as reliable. Generally, all cited research in
this thesis considering malware confirms that currently it is increasingly more intelligent
at avoiding debugger and VM-like environments.

Alternatively, Polino et al. proposed an approach to practically defeat the techniques
that malware employs to detect instrumentation systems. They claim that instrumentation
tools may leverage its complete control on the instrumented binary to hide the artefacts
that a DBI tool itself introduces during the instrumentation process. For example, in
order to mitigate exposure of the VM’s instruction pointer utilising the fxsave instruction,
Polino et al. detect when it is executed and insert a call to a function that manipulates the
floating-point context by modifying the value of RIP with the correct address inside the
main module of the program. They implemented a Pintool, called Arancino which adapts
all of the proposed countermeasures for anti-instrumentation techniques and tested it
with some split-personality malware samples.

Finally, we discuss some research conducted in the field of sandbox escaping since
this topic is also analysed in this thesis. Kim et al. discovered a hardware disturbance
error in the way DRAM memory is utilised called Rowhammer attack [46], which was
firstly classified as a reliability issue since it may cause data corruption. However, further
exploration of the issue showed it may be a security issue, too. This conclusion was
extended by Quiao et al. who managed to exploit Google Native Client (NaCl), a sandbox
used in Chrome browser to securely run untrusted native code [47], by employing a
Rowhammer attack [48]. The occurrence of memory errors relies on accessing the same row
of memory cells frequently which may cause adjacent cells discharge at an accelerated
rate. If a cell state changes from charged to uncharged before it is refreshed, the bit has

36



6.2 Limitations & Future Work

flipped. Quiao et al. have successfully applied this observation by rapidly accessing data
which memory row is adjacent to code responsible for enforcing the CFI policy in NaCl.
By corrupting this code segment to some extend they have finally achieved a sandbox
escape.

6.2 Limitations & Future Work
There are some known limitations associated with the proposed methodologies. First, the
detect mechanism can be avoided by extending DBI frameworks. However, we already
discussed that the JIT compiler introduces a lot of noise in the normal execution of the
application, constantly turning up new possibilities to detect irregularities. Secondly, to
escape the DBI sandbox, the application has to execute a function at least twice and simul-
taneously know its address in the code cache. Moreover, it needs to alter this function in
the code cache before its last execution. Additionally, to escape DBI without knowing ex-
actly the address of a function executed at least twice, requires calculation of the necessary
memory locations. This is only possible, since the offset between pages created by mmap is
constant [39]. However, the attacker has to possess copies of the instrumented application,
instrumentation platform, analysis plugin, and all depending dynamic libraries because
they all reside in the code cache and influence the fixed offsets between memory regions.
Another limitation of our approach regarding the increased attack surface includes the
existence of a user-controlled buffer which is easy to redirect the execution flow to.

The research presented in this work discussed in detail the disadvantages of utilising
DBI engines in the security domain. The most fundamental problem is that DBI logic
and application reside in the same address space, with no isolation present. The question
remains how Intel Pin and other DBI frameworks can mitigate this problem in the future
and how these techniques would influence our research. A possible mitigation strategy
might introduce Intel Memory Protection Keys to change memory access permissions from
user space without sacrificing performance. In this way, the VM may write exclusively to
code cache and disallow write attempts from the application.

Our work regarding DBI stealthiness provides many opportunities for extending the
scope of this thesis. Since DBI frameworks are constantly being developed and improved,
we assume that many of our detection techniques will become obsolete in the time. Never-
theless, this should not hinder future research in discovering new ways to compromise DBI
frameworks’ stealthiness. As already explained, the design of DBI engines does not imply
stealthiness and therefore, some instrumentation artefacts in the program’s execution will
be present. Furthermore, we can execute jitmenot, presented in this thesis, in other DBI
frameworks and register its output, as well as develop more detection techniques.

6.3 Conclusion
In this thesis, we showed that DBI frameworks are commonly used in a context of security,
both as an analysis platform, as well as a hardening tool. Thus we systematically discussed
the requirements for DBI frameworks to be used within such a context. We showed,
that DBI is not able to hold these requirements in practice. We demonstrate, that the
stealthiness requirement does not hold in practice by enumerating different inherent
techniques to detect DBI. In addition, we also attested that DBI does not sufficiently
isolate instrumented applications from the instrumentation framework, which provides a
possibility for instrumented applications to gain arbitrary code execution on the analysis

37



6.3 Conclusion

system. Finally, we argue, that instead of increasing security by introducing DBI based
software hardening measures, DBI actually decreases the overall security by escalating
an otherwise hard-to-exploit real world bugs into to full code execution. To support our
claim, we implemented a couple of POCs to support our claims, which we are happy to
freely share with the community.
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ASLR Address Space Layout Randomisation.

AVE Anti-Virus Engine.

CFG Control Flow Graph.

CFI Control Flow Integrity.

COTS Commercial Off-The-Shelf.

CRA Code-Reuse Attack.

DBI Dynamic Binary Instrumentation.

FPU Floating Point Unit.

IR Intermediate Representation.

JIT Just-In-Time.

NX No-eXecute.

OS Operating System.

PID Process Identifier.

PIE Position Independent Executable.

POC Proof Of Concept.

RIP Instruction Pointer.

ROP Return-Oriented Programming.

SMC Self-Modifying Code.

VM Virtual Machine.

VMI Virtual Machine Introspection.
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Errata
May 19, 2018

Page(s) Correction

15, 23 Explains -smc_strict command line argument of Intel Pin and how it influ-
ences the smc instrumentation detection technique.
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