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Abstract
Port scanning is used to discover vulnerable services and launch attacks
against network infrastructure. Port knocking is a well-known technique
to hide TCP servers from port scanners. This thesis presents the design
of TCP Stealth, a socket option to realize new port knocking variant with
improved security and usability compared to previous designs.
TCP Stealth replaces the traditional random TCP SQN number with a token
that authenticates the client and (optionally) the first bytes of the TCP
payload. Clients and servers can enable TCP Stealth by explicitly setting
a socket option or linking against a library that wraps existing network
system calls.
This thesis also describes Knock, a free software implementation of TCP
Stealth for the Linux kernel and libknockify, a shared library that wraps
network system calls to activate Knock on GNU/Linux systems, allowing
administrators to deploy Knock without recompilation. Finally, we present
experimental results demonstrating that TCP Stealth is compatible with
most existing middleboxes on the Internet.



Abstrakt
Portscans werden zum Auffinden und Ausnutzen verwundbarer Netzwerk-
dienste durchgeführt. Port-Knocking ist eine allgemein bekannte Technik,
die es ermöglicht, TCP Server vor Portscannern zu verstecken. Diese Ar-
beit stellt TCP Stealth vor, welches eine neue Variante des Port-Knocking
darstellt, die gegenüber bestehenden Konzepten eine höhere Sicherheit
sowie eine bessere Benutzerfreundlichkeit verspricht.
TCP Stealth ersetzt die übliche Zufallszahl im TCP-SYN-Segment durch
eine kryptographische Prüfsumme, welche den Client authentisiert und
optional die ersten Bytes des TCP Datenstroms gegen Modifizierungen
schützt. Clients und Server aktivieren TCP Stealth durch das Setzen einer
Socket-Option oder verwenden eine dynamische Bibliothek, welche die
relevanten Systemaufrufe passend zu den bereits Bestehenden ausführt.
In dieser Arbeit wird weiterhin Knock vorgestellt, eine Freie-Software-
Implementierung von TCP Stealth im Linux-Kernel sowie libknockify,
eine dynamische Bibliothek, die es Administratoren ermöglicht, Knock
ohne Neukompilieren bestehender Anwendungen zu verwenden. Außer-
dem stellen wir die Ergebnisse unserer Experimente vor, welche zeigen,
dass TCP Stealth kompatibel mit den meisten existierenden NAT-Geräten
im Internet ist.



1 Introduction

Today it is possible to perform a port scan on all machines on the Internet in less than an
hour using a single PC [6]. At the same time, major governments are actively developing,
collecting and using undisclosed exploits to perform industrial espionage and gain an
edge in international politics [21]. Thus it is increasingly important to minimize one’s
visible footprint and thus attack surface on the Internet. Due to insider threats — further
fueled by court orders [9] — this even holds on intranets. Citizens may also simply prefer
to not leak information about the services offered by their systems. Finally, applications
that try to enable users to cicrumvent censorship — such as Tor bridges [5] — may want
to hide their existence from scans by censors.

Port knocking [17] is a method for making TCP servers less visible on the Internet. The
basic idea is to make a TCP server not respond (positively) to a TCP SYN request unless a
particular “knock” packet has been received first. This can be helpful for security, as an
attacker who cannot establish a TCP connection also cannot really attack the TCP server.

Traditional port knocking techniques generally do not consider a modern nation
state adversary. A nation state attacker is able to observe all traffic from the TCP client
and perform man-in-the-middle attacks on traffic originating from the client. In fact,
existing commercial solutions can initiate a man-in-the-middle attack after the initial TCP
handshake has been completed.

Furthermore, on the server side, an adversary looking for exploitable systems should
be expected to have the ability to perform extensive port scans for TCP servers. Finally, an
advanced attacker might be in control of parts of the core of the network, and may thus
try to detect unusual patterns in network traffic. However, it may still be safe to assume
that adversary does not flag a standard TCP handshake with the TCP server as suspicious,
as this is way too common.

This thesis describes TCP Stealth, a design for a stealthy port knocking method that
enables authorized clients to perform a standard TCP handshake with the server without
additional bandwidth and without significant computational overhead by embedding
an authorization token in the sequence number (ISN) of the TCP SYN packet. The token
demonstrates to the server that the client is authorized and may furthermore authenticate
the beginning of the TCP payload to prevent man-in-the-middle attacks. The TCP server
is hidden from port scanners and the TCP traffic has no anomalies compared to a normal
TCP handshake.

TCP Stealth is a variant of port knocking [17], where the TCP port only really opens af-
ter the client has transmitted some kind of authenticator. The idea of stealthy transmission
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1 Introduction

of an authenticator in a TCP SYN packet is a basic form of network steganography. The
specific idea of hiding information in TCP headers including using the ISN header was
already described in [27], and used for port knocking in SilentKnock [30].

The thesis also describes Knock, an implementation of TCP Stealth for the Linux kernel.
Knock consists of a kernel patch and a shared library libknockify that can be used to
add TCP Stealth support to existing applications without modifying the binaries. Knock
makes it easy to implement and deploy TCP Stealth, providing a more usable and secure
port knocking scheme compared to existing designs.

Key contributions of this thesis include:

• TCP Stealth offers integrity protection of the payload, defeating a man-in-the-middle
attack trying to take control of a session after the TCP SYN packet. However, this
only works for well-designed application protocols where the client provides key
material for the session with the first bytes of the payload.

• TCP Stealth works with most middleboxes on the Internet, while SilentKnock fails
in the presence of any NAT device.

• TCP Stealth is supposed to be fully integrated with the kernel and the design does
not require additional proxies or daemons to run on the system. Thus, it is trivial to
use TCP Stealth on operating systems that support it. We believe this is crucial to
convince applications and system administrators to use it by default.

• On GNU/Linux, libknockify enables the use of TCP Stealth without the need to
recompile existing network applications. Using the LD PRELOAD mechanism, support
for TCP Stealth can be easily activated — assuming the local kernel includes the
Knock patch.

• TCP timestamps are used in order to randomize the authenticator and the integrity
protector. For the reason that TCP timestamps describe relative time values the
clocks of the communicating end-hosts do not need to be synchronized.

2



2 Background

2.1 The TCP Three Way Handshake
Whenever a TCP client wants to communicate with a TCP server, the two parties perform
a TCP three way handshake (see [29], Section 6.5.5 and [24], Section 3.4). The flawed
design of this handshake is the foundation for port mapping tools, as in the handshake the
server leaks information about the availability of a service without checking the client’s
authorisation.

Figure 1 shows the sequence of TCP segments which are sent to establish a connection.
In brevity, the establishment of the connection works as follows: The first TCP SYN
segment is sent out by the host which wants to initiate a connection which is acknowledged
by a SYN/ACK packet in case of the destination host accepting the connection request.
After receiving a positive reply, host 1 sends out an ACK packet which finalizes the TCP
three-way handshake.

Host 1 Host 2

Ti
m

e

SYN (SEQ = x)

SYN (SEQ = y, ACK = x + 1)

(SEQ = x + 1, ACK = y + 1)

Figure 1: Packet flow during the TCP three-way
handshake

Host 1 Host 2

Ti
m

e

SYN (SEQ = x)

RST (SEQ = y, ACK = x + 1)

Figure 2: Packet flow for a connection attempt
to a closed TCP port

The TCP three way handshake allows an adversary to easily determine if some TCP
service is offered at a given port by a host on the Internet: if the TCP port is closed, the
server reacts differently to the TCP SYN packet (Figure 2). Thus, an adversary can easily
map Internet services by considering the differences in the server’s replies in the packet
flows depicted in Figure 1 and Figure 2 respectively.

3



2 Background 2.2 A Modern Adversary Model

2.2 A Modern Adversary Model
Since the early days of TCP, port scanning has been used by saboteurs to locate vulnerable
systems. In a new set of top secret documents, it is revealed that in 2009, the British spy
agency GCHQ made port scans a “standard tool” to be applied against entire nations
(Figure 3). Twenty-seven countries are listed as targets of the HACIENDA program in
the presentation (Figure 4), which comes with a promotional offer: readers desiring to
do reconnaissance against another country need simply send an e-mail (Figure 5). The
documents do not spell out details for a review process or the need to justify such an
action. It should also be noted that the ability to port-scan an entire country is hardly wild
fantasy; in 2013, a port scanner called Zmap was implemented that can scan the entire
IPv4 address space in less than one hour using a single PC. [6] The massive use of this
technology can thus make any server anywhere, large or small, a target for criminal state
computer saboteurs.

Figure 3 Figure 4

Figure 5 Figure 6

The list of targeted services includes ubiquitous public services such as HTTP and FTP,
as well as common administrative protocols such as SSH and SNMP (Figure 6). Given that
in the meantime, port scanning tools like Zmap have been developed which allow anyone

4



2 Background 2.2 A Modern Adversary Model

to do comprehensive scans, it is not the technology used that is shocking, but rather the
gargantuan scale and pervasiveness of the operation.

2.2.1 The Enemy Online

In addition to simple port scans, GCHQ also downloads so-called banners and other
readily available information (Figure 6). A banner is data, usually text, sent by some
applications when connecting to an associated port; this often indicates system and
application information, including version and other information useful when looking for
vulnerable services. Doing reconnaissance at the massive scale revealed in the documents
demonstrates that the goal is to perform active collection and map vulnerable services
ubiquitiously, not to go after specific targets. Rather than the cliche of merely listening to
everything, the documents presented show active interaction with networks and systems.

By preparing for attacks against services offered via SSH and SNMP, the spy agency
targets critical infrastructure such as systems used for network operations. As shown
in the past with the penetration of Belgacom [1] and Stellar [23], when an employee’s
computer system or network credentials may be useful, those systems and people are
targeted and attacked.

Figure 7 Figure 8: CNE stands for Computer Network Ex-
ploitation.

The database resulting from the scans is then shared with other spy agencies of the Five
Eyes spying club (Figure 7), which includes the United States, Canada, United Kingdom,
Australia and New Zealand. MAILORDER is described in the documents as a secure
transport protocol used between the Five Eyes spy agencies to exchange collected data.

2.2.2 Every Device a Target

The process of scanning entire countries and looking for vulnerable network infrastructure
to exploit is consistent with the meta-goal of ”Mastering the Internet”, which is also the
name of a GCHQ cable-tapping program. These spy agencies try to attack every possible
system they can, presumably as it might provide access to further systems. Systems may be
attacked simply because they might eventually create a path towards a valuable espionage
target, even without actionable information indicating this will ever be the case. Using
this logic, every device is a target for colonization, as each successfully exploited target is

5



2 Background 2.2 A Modern Adversary Model

theoretically useful as a means to infiltrating, for monitoring or as an operational location
that is useful for another possible target.

Figure 9 Figure 10

Figure 11 Figure 12

Port scanning and downloading banners to identify which software is operating on the
target system is merely the first step of the attack (Figure 8). Top secret documents from
the CSEC, NSA and GCHQ seen by Heise demonstrate that the involved spy agencies
follow the common methodology of online organized crime (Figure 9): reconnaissance
(Figure 10) is followed by infection (Figure 11), command and control (Figure 12), and
exfiltration (Figure 13).

The NSA presentation makes it clear that the agency embraces the mindset of criminals.
In the slides, they discuss techniques and then show screenshots of their own tools to
support this criminal process (Figure 14, 15 and 16).

2.2.3 Internet Colonization

The NSA is known to be interested in 0-day attacks, which are attacks exploiting largely
unknown vulnerabilities for which no patch is available. Once an adversary armed with
0-day attacks has discovered that a vulnerable service is running on a system, defense
becomes virtually impossible.

6



2 Background 2.2 A Modern Adversary Model

Figure 13 Figure 14

Figure 15 Figure 16

Figure 17 Figure 18

Firewalls are unlikely to offer sufficient protection, whether because administrators
need remote access or because spy agencies have already infiltrated the local network [11].

7



2 Background 2.2 A Modern Adversary Model

Furthermore, adding additional equipment, such as firewalls administered via SNMP, into
an internal network may also open up new vulnerabilities.

Figure 8 points to a particular role that HACIENDA plays in the spy club’s infrastruc-
ture, namely the expansion of their covert infrastructure. The top secret documents seen
by Heise describe the LANDMARK program, a program by the Canadian spy agency
CSEC which is used to expand covert infrastructure (Figure 17).

Figure 19 Figure 20

Figure 21 Figure 22

The covert infrastructure includes so-called Operational Relay Boxes (ORBs), which
are used to hide the location of the attacker when the Five Eyes launch exploits against
targets or steal data (Figure 18). Several times a year, the spy club tries to take control of
as many machines as possible, as long as they are abroad. For example, in February 2010
twenty-four spies located over 3000 potential ORBs in a single work day (Figure 19).
However, going over the port scan results provided by HACIENDA was considered too
laborous (Figure 20), so they programmed their OLYMPIA system to automate the process
(Figure 21). As a result, the spies brag that they can now locate vulnerable devices in a
subnet in less than five minutes (Figure 22).

The Canadians are not the only ones using HACIENDA to locate machines to com-

8



2 Background 2.2 A Modern Adversary Model

promise and turn into ORBs. At GCHQ, the hunt for ORBs is organized as part of the
MUGSHOT program (Figure 23). The GCHQ has also automated the process and claims
significant improvements in accuracy due to the automation (Figure 24). Again the infor-
mation obtained from HACIENDA plays a prominent role (Figure 25). A key point is that
with MUGSHOT the GCHQ integrates results from active scans (HACIENDA) as well as
passive monitoring (Figure 26), to “understand everything important about all machines
on the Internet”.

Figure 23 Figure 24

Figure 25 Figure 26

Thus, system and network administrators now face the threat of industrial espionage,
sabotage and human rights violations created by nation-state adversaries indiscriminately
attacking network infrastructure and breaking into services. Such an adversary needs
little reason for an attack beyond gaining access and is supported by a multi-billion dollar
budget, immunity from prosecution, and compelled collaboration by companies from
Five Eyes countries. As a result, every system or network administrator needs to worry
about protecting his system against this unprecedented threat level. In particular, citizens
of countries outside of the Five Eyes have, as a result of these programs, greatly reduced
security, privacy, integrity and resilience capabilities.

9



3 The Design of TCP Stealth

This section outlines and explains the decisions that were taken during the design process
of TCP Stealth. The requirements and design goals are evaluated and justified and the
general operation of TCP Stealth is explained. At a later point, focus is being placed
on how TCP Stealth achieves authenticity of the communication participants as well as
integrity protection of the first data that is sent by the side initiating the connection.

3.1 Overview
TCP Stealth assumes the existence of a secret that is known to both of the communicating
parties, which serves as a pre-shared-key (PSK). The PSK needs to be distributed to the
communication partners using a secure channel prior to any communication. Specifically,
the PSK must be given to the TCP clients and the TCP server before the TCP handshake
can be performed.

The basic goal of TCP Stealth is to limit connections to the TCP server to clients that
know the correct PSK. Other clients should ideally not be able to deduce the existence of
the TCP server; in particular, for unauthorized clients the TCP handshake should fail as if
the server was not running. Furthermore, an adversary performing a man-in-the-middle
attack after the TCP handshake should not be able to replace the payload of the first TCP
segment sent from the client to the server after the handshake.

TCP Stealth is designed for a single PSK per TCP server. Thus, multiple authorised
clients are expected to use the same PSK if they communicate with the same TCP server.
Naturally, the application can change the PSK at any time, for example if the system
administrator decides to change the passphrase.

3.2 Stealthiness
A key question for any port knocking design is how to communicate the “knock”, a
message that informs the TCP server that the client is authorised to communicate.

For TCP Stealth, we decided that it should operate in a way that can not be distin-
guished from an ordinary TCP connection by a passive attacker.1 The reason is that we do

1An active attacker is able to determine that her attempt to connect to the TCP server somehow fails. If the
adversary then also observes authorised clients connecting successfully, she can deduce that the TCP server is
somehow protected.

10



3 The Design of TCP Stealth 3.2 Stealthiness

not want to needlessly alert network security middleware to the presence of TCP Stealth.
Also, by not sending any unusual traffic, TCP Stealth is more likely to work in the presence
of firewalls and other systems that may filter traffic they consider abnormal.

The requirement for a stealthy operation immediately rules out the possibility of
sending specially crafted additional data, such as a UDP packet or any other special “knock”
packet. In fact, even an additional TCP SYN might raise suspicion and thus should not be
permitted.

For a truly stealthy knock, the security token has to be embedded in the TCP SYN
part of the TCP three way handshake. Providing the security token later would enable an
adversary to perform the handshake and thus detect that the port is open, and providing
the security token outside of the TCP SYN would create additional traffic that could raise
suspicion.

As TCP Stealth is to be stealthy, it is obvious that the TCP SYN used by TCP Stealth
may not structually deviate from ordinary TCP SYN packets. Comparing the TCP header
fields (see Figure 27) with their predefined values and meanings according to RFC793 [24]
it follows that only the sequence number can be used in order to covertly transmit in-
formation: Source and destination port as well as the window size, the flags and the
checksum cannot be altered without destroying the semantics of the SYN packet, and
the acknowledgement number, data offset and the urgent pointer are defined to be zero
when the SYN flag is set. This leaves the sequence number the only good place to hide
information.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgement Number
Data

Offset Reserved
U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window

Checksum Urgent Pointer

Options
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 27: TCP header fields as defined per RFC793 [24], section 3.1.), colored according to their predefined
values in a SYN segment – red fields cannot be altered without changing the semantics of the connection
request, gray fields are defined to be zero, green fields can be chosen arbitrarily, white fields are optional

The sequence number conveyed by the first SYN packet is referred to as the initial
sequence number (ISN). Thus, TCP Stealth interprets the value of the ISN as a security
token; its value must match the result of a specific calculation involving the PSK, thereby
demonstrating that the TCP client is in possession of the PSK and thus authorised to
connect. In case a connecting client fails to set the correct ISN and is thus assumed to not
know about the PSK, the TCP server reacts as if the port were closed (see Figure 2).

The main limitation of using the ISN for the security token is that this limits the security
token to 32 bits, giving the adversary a chance of 1 : 232 to access the service without
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3 The Design of TCP Stealth 3.3 The Authentication Security Token

knowing the PSK. Using a non-standard port for the TCP service may further lower the
chance of accidental discovery to 1 : 248.

This design choice of embedding the security token into the ISN also simplifies the im-
plementation of the TCP server: the server’s state machine can remain virtually unchanged,
with the exception of a possible transition to an error state if the ISN is incorrect.

3.3 The Authentication Security Token
Authentication itself is desired in order to provide a way for the server to tell if the client
is authorised to know about the existence of the TCP server. Note that in TCP Stealth
authentication is done only in one direction: the server can be (almost, see section 8.11) sure
that the client is in possession of the PSK, but the client can not tell if she is communicating
with the intended server. Thus, clients using TCP Stealth must still authenticate the server
using application-level protocols.

Authentication of the communication partners is achieved by the client proving the
ownership of the PSK. The PSK is a symmetric (shared) secret with the following proper-
ties:

• The PSK is 64 bytes long (which offers sufficient security and works well with the
MD5 hash function)

• The PSK should satisfy the statistical requirements of a random number

• The PSK needs to be known only to authorised clients and the server

In the following, we will refer to a binary string which fulfills all of the above require-
ments as the secret S. To enable TCP Stealth, both client and server must set the TCP
Stealth option and provide the secret S as the argument.

Conceptually, the authentication token A is then calculated as the hash (h) of the
destination address (consisting of the destination IP address IPd and TCP port Pd) and a
TCP timestamp T :

A := h((IPd, Pd, T ), S) (1)

More precisely, TCP Stealth uses a single round of the MD5 hash function for h(IV,D)
(i.e. the function MD5Transform defined by RFC 1321 [26], Appendix 3). Here, D is the
domain of the hash function and IV is the initialisation vector. A single round of MD5
was chosen as the Linux kernel already uses MD5 to calculate ISNs. Furthermore, given
that the final output has to be reduced to a 32 bit value, the quality of MD5 is sufficient for
the level of security attainable with only 32 bits. Finally, a single round of MD5 is very fast
— indeed, MD5 is also used for the calculation of TCP SYN COOKIES to defeat TCP SYN
flooding attacks [2, 7]. Thus, MD5 is also a good choice with respect to defeating timing
attacks and ensuring availability.

Algorithm 1 describes the steps of the ISN generation for authentication in pseudo
code. The goal of this presentation is to enable binary-compatible implementations of the
method, thus the specific layout of the data in memory is included. The ⊕ denotes bitwise
xor operation. Arrays accesses are written with byte indexes starting from zero in brackets.
The timestamp T is obtained from the TCP timestamp option, represented in T in the
following algorithms. As the timestamp option is optional, a value of zero is used if the
option is not present.
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Algorithm 1 ISN generation without integrity protection

Require: Pd, IPd in network byte order ∧ secret[0 : 63] 6= 0
Ensure: ISN in network byte order

if @ T then
T ⇐ 0

end if
if network layer is IPv4 then

IV[0 : 3]⇐ IPd[0 : 3]
IV[4 : 15]⇐ 0

else
if network layer is IPv6 then

IV[0 : 15]⇐ IPd[0 : 15]
end if

end if
IV[8 : 11]⇐ IV[8 : 11]⊕ T
IV[12 : 13]⇐ IV[12 : 13]⊕ Pd

H[0 : 15]⇐ MD5Transform(IV[0 : 15], secret[0 : 63])
return H[0 : 3]⊕H[4 : 7]⊕H[8 : 11]⊕H[12 : 15]

Algorithm 1 calculates the 32 bit ISN authentication token as follows: First, the 16 bytes
of an initialization vector IV are set to the destination address, in the case of IPv4 padded
with zeros. Then, the timestamp value (in network byte order) is XORed at offsets 8 to
11, and finally the destination port (in network byte order) is XORed at offsets 12 to 13
(those are expected to be low-entropy offsets in IPv6 addresses). Then, A is calculated
using a single round of MD5 (MD5Transform) using IV for the initialisation vector and
the 64-byte PSK as the argument for the hash function. Finally, the resulting four 32-bit
words of the MD5 hash are combined using XOR to calculate the 32-bit ISN in network
byte order.

The server can perform the same calculation and compare the received ISN with its
own result. If the ISN fails to match, the client is not authorised and the connection is
refused.

3.4 Authentication and Integrity Protection
The ISN calculation from the previous section can be used if only client authentication is
desired. However, TCP Stealth can also be used to offer integrity protection for the first
segment of TCP data transmitted from the TCP client to the TCP server. This is important
given the possibility of an advanced adversary performing a man-in-the-middle attack
after the TCP handshake.

The design of TCP Stealth limits integrity protection to the first TCP segment, as we
wanted to ensure that integrity checks would be applied before the TCP server application
would receive any data from the TCP client. By limiting integrity protection to the first
TCP segment, the kernel can check the payload integrity before ever passing data to
the application. As the TCP client’s kernel may combine data from multiple write()

operations into a single segment (see TCP CORK2), and as IP routers may fragment packets,

2man 7 tcp
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both client and server must also apriori agree on the number of bytes that are to be
integrity protected.

To enable integrity protection, the TCP client must provide the payload (and length)
that is to be protected to the TCP Stealth implementation before the TCP handshake is
initiated. This is unproblematic, as long as the application-protocol is designed such that
the client begins the conversation. On the server side, integrity protection is enabled by
setting an option that provides the number of bytes that are to be integrity protected.
Naturally, both client and server also still need to provide the PSK.

When TCP Stealth is used to provide authentication and integrity protection, the
security token is conceptually split into two halves (A, I), one providing authentication
(A) and the other integrity protection (I). I is simply calculated as the hash of the integrity
protected payload and the PSK. A is now calculated as the hash (h) of the destination
address (consisting of the destination IP address IPd and TCP port Pd), the TCP timestamp
T and I :

A := h((IPd, Pd, T, I), S) (2)

Algorithm 2 describes the steps of the ISN generation for authentication and integrity
protection in pseudo code. ⊕ denotes the bitwise xor operator while the ◦means concate-
nation. Arrays accesses are written with byte indexes starting from zero in brackets.

Algorithm 2 ISN generation with integrity protection

Require: Pd, IPd in network byte order ∧
len 6= 0 ∧ payload[0 : len] 6= 0 ∧ secret[0 : 63] 6= 0

Ensure: ISN in network byte order
if @ T then

T ⇐ 0
end if
I[0 : 15]⇐ MD5(secret[0 : 64] ◦ payload[0 : len])
IH[0 : 1]⇐ I[0 : 1]⊕I[2 : 3]⊕I[4 : 5]⊕I[6 : 7]⊕I[8 : 9]⊕I[10 : 11]⊕I[12 : 13]⊕I[14 : 15]

if network layer is IPv4 then
IV[0 : 3]⇐ IPd[0 : 3]
IV[4 : 15]⇐ 0

else
if network layer is IPv6 then

IV[0 : 15]⇐ IPd[0 : 15]
end if

end if
IV[4 : 5]⇐ IV[4 : 5]⊕ IH[0 : 1]
IV[8 : 11]⇐ IV[8 : 11]⊕ T
IV[12 : 13]⇐ IV[12 : 13]⊕ Pd

AV[0 : 15]⇐ MD5Transform(IV[0 : 15], secret[0 : 63])
AV[0 : 3]⇐ AV[0 : 3]⊕AV[4 : 7]⊕AV[8 : 11]⊕AV[12 : 15]
return AV[0 : 1] ◦ IH[0 : 1]

For the operation mode with integrity protection, the protected portion of the payload
is limited to at most the first segment. Additionally, both client and server must know the

14
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exact number of bytes to be protected beforehand. The secret is prepended to the protected
payload and hashed using full MD5 and the resulting eight 16-bit words of the MD5 hash
are combined using XOR to a 16-bit integrity hash (IH).

Then, the 32 bit ISN is calculated using a single round of MD5 using the 64-byte
shared secret as the argument for the hash function and a 16 byte initialization vector IV
computed as follows:

First, the 16 bytes are set to the destination address, in the case of IPv4 padded with
zeroes. The IH is XORed at offset 4 to 5. Then, the timestamp value (in network byte order)
is XORed at offsets 8 to 11, and finally the destination port (in network byte order) is
XORed at offsets 12 to 13.

The resulting four 32-bit words output by the MD5Transform function are combined
using XOR to calculate at 32-bit authenticator value (AV). The upper 16 bit of the AV are
concatenated with the 16 bit of the IH to create the final 32-bit ISN in network byte order.

Host 1 Host 2

Ti
m

e

SYN (SEQ = x = (AV ◦ IH))

RST (SEQ = y, ACK = x + 1)

ACK (SEQ = y, ACK = x + 1)

(SEQ = x + 1, ACK = y + 1)Payload

RST (SEQ = y + 1, ACK = x + 2)

. . .

no

yes

AV correct?

no

yes

IH correct?

Figure 28: Possible packet and message flows during a TCP Stealth enhanced TCP handshake
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The TCP server uses the 16 bit IH from the ISN to calculate the AV when receiving
the TCP SYN packet. If the AV matches, the handshake is allowed to proceed. Then,
when the TCP server receives the first segment, it checks that the included payload is
of sufficient length and in combination with the shared secret hashes to the IH. If these
checks fail, the connection is closed (by sending a TCP RST). The three-way-handshake
with authentication and integrity protection is shown in Figure 28.

Given a handshake using TCP Stealth with integrity protection, a TCP client protocol
would then ideally transmit critical data of some application-layer key exchange during
the first TCP segment. For example, a TCP client might send his half of a Diffie-Hellman
(DH) key exchange in the first segment. By providing integrity protection for the first
segment, TCP Stealth then makes it difficult for an adversary to perform a man-in-the-
middle attack after the TCP handshake, as substituting the first TCP segment with the
attacker’s key exchange data would likely (1− 1/216 in the best case, 1− 1/215 on average)
be detected by the TCP server.

By including I in the calculation of A, we ensure that if I changes the authenticator
A also changes; this prevents an adversary from separately breaking authentication and
integrity protection. While the adversary can now (in the best case) detect the existence of
the TCP server with probability 1/216 (1/215 on average), sending arbitrary application
payload to the server still only succeeds with probability 1/232 in the best case (1/231 on
average).

3.5 SYN Retransmissions
In case the first SYN segment does not reach the server (due to packet loss or by being
intentionally withheld by an attacker) a all following SYN requests by this connection
may not update the TCP timestamp value, if present. This is needed to ensure that the
server side can still correctly verify authenticity and integrity.

Note that if the client intends to establish a second connection, the source port will
change and thus even a repated ISN will not confuse the server — even if the TCP
timestamp did not advance and the content integrity protections are not used.
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4 Implementation

TCP Stealth was implemented in two components. The first component is a patch to the
Linux kernel called “Knock”, which adds support for a setsockopt() call to activate
TCP Stealth. The second component is a user space shared library called libknockify

which can be linked against existing binary to enable TCP Stealth for legacy code without
modifications to the source.

4.1 Kernel Space
This section explains which functions are added to the Linux kernel and where all relevant
calls to the newly added functions are placed. We also give a detailed overview of the
edits done at a file level.

4.1.1 Summary of the Patched Files

In summary, the proposed kernel patch modifies eleven source files in the kernel. This
section briefly explains the purpose of each modification. All paths are relative to the root
directory of the Linux kernel source.

include/linux/tcp.h At the beginning, an inclusion of linux/cryptohash.h is added
in order to make the MD5 MESSAGE BYTES constant available to the code. The struct

tcp sock is extended to contain the struct stealth which holds all needed information
about the current state of TCP Stealth.

include/net/secure seq.h The signatures of the functions tcp stealth do auth and
tcp stealth sequence number are added to make them available to the TCP/IP stack.

include/net/tcp.h The signatures of the functions tcp parse tsval option and
tcp stealth integrity are added to make them available to the TCP/IP stack as well as
the two macros be32 isn to be16 av and be32 isn to be16 ih.

include/uapi/linux/tcp.h The modifications to this file introduce the option
numbers for the new setsockopt calls TCP STEALTH, TCP STEALTH INTEGRITY and
TCP STEALTH INTEGRITIY LEN and makes them available to the user space applications.
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net/core/secure seq.c Several include directives add signatures of functions which
are needed by the added code. The functions tcp stealth sequence number and
tcp stealth do auth are newly defined.

net/ipv4/Kconfig We add a configuration parameter to the network branch of the kernel
called TCP STEALTH which is used to toggle TCP Stealth support at compile time. At the
time of writing, the default value for this option is set to not include TCP Stealth support
in the kernel.

net/ipv4/tcp.c The patch adds the definition of the new function
tcp stealth integrity as well as the definition of the setsockopt handlers for
the newly introduced setsockopt calls TCP STEALTH, TCP STEALTH INTEGRITY and
TCP STEALTH INTEGRITIY LEN.

net/ipv4/tcp input.c In this file the definition of the functions tcp parse tsval option

and tcp stealth integrity check is added. Two patches of existent functions are
performed:

• Patch the function tcp rcv established to call tcp stealth integrity check in
order to verify the integrity protector of any incoming segment that was able to pass
the authenticator check (fast path).

• Patch the function tcp data queue to call tcp stealth integrity check in order
to verify the integrity protector of any incoming segment that was able to pass the
authenticator check (slow path).

net/ipv4/tcp ipv4.c The patch adds an include directive in order to make the TCP Stealth
related functions as defined in net/secure seq.h available. The function tcp v4 connect

is patched to call tcp stealth sequence number to generate TCP Stealth conforming ISN
values and tcp v4 do rcv is patched to call tcp stealth do auth in order to verify the
authenticator of incoming connections.

net/ipv4/tcp output.c Modifications to this file concern the handling of the TCP times-
tamp option. The function tcp connect is patched to use the TSVal that was stored at
the time the ISN was generated whereas the function tcp retransmit skb is patched to
revert the TSVal field in case of any SYN retransmits to the original value of the first SYN
packet of the current TCP session.

net/ipv6/tcp ipv6.c The patch adds an include directive in order to make the TCP Stealth
related functions as defined in net/secure seq.h available. The function tcp v4 connect

is patched to call tcp stealth sequence number to generate TCP Stealth conforming ISN
values and tcp v4 do rcv is patched to call tcp stealth do auth in order to verify the
authenticator of incoming connections.

4.1.2 New Functions

The Knock patch introduces five new functions which are described hereafter.
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tcp stealth sequence number This function is responsible for creating a ISN that can
be used by TCP Stealth by calculating the AV and optionally (if integrity protection is
enabled) adds the IH to the constructed AV. It does so by applying a unification of the
steps specified by Algorithms 1 and 2 on the input parameters.

tcp stealth sequence number

Declaration include/net/secure seq.h
Definition net/core/secure seq.c
Xrefs tcp stealth do auth, tcp v4 connect, tcp v6 connect

Callees memcpy, md5 transform

Parameters struct sock *sk a pointer to a TCP Stealth enabled struct sock

be32 *daddr a pointer to a memory location containing the
daddr size many bytes of the destination IP ad-
dress in network byte order

u32 daddr size the size of the destination IP address in bytes (i.e.
either 4 for IPv4 or 16 for IPv6) in host byte order

be16 dport the destination port in network byte order
u32 tsval item the value of the TSVal field of the optional

TCP timestamp extension in host byte order, or 0 if
no timestamp is going to be used

Return Value a 32-bit ISN in host byte order

Table 1: Summary of function tcp stealth sequence number

We go through the function as shown in Listing 1 step by step:
After the function signature a struct tcp sock *tp is initialized with a pointer to the

current TCP socket on which TCP Stealth should be used. Two local arrays are allocated
on the stack: One of type u32 called sec which will hold an intermediate representation
of the PSK (see below) and another one of type le32 called iv which will hold the
initialization vector IV (compare Algorithms 1 and 2). The resulting ISN in big endian
format will be stored in the local variable isn and i denotes the usual loop counter used
in several for statements.

After the declaration of the local variables the destination address is copied into the
IV using memcpy. Note that the zero-padding as described by the formal algorithms in
section 3.4 is achieved by initializing the IV with zeroes at runtime. According to the formal
algorithm, lines 15 to 17 modify the IV using the exclusive or operator (note the conversions
to network byte order). Even though the integrity hash IH is only present in Algorithm 2
the described function implements a unified version of both formal Algorithms, the
integrity hash is defined to be zero if only the authenticator should be calculated. In the
latter case the exclusive or operator in line 15 simply becomes a NOP as basic math tells.
(X ⊕ 0 = X)

In order to provide portability across little and big endian platforms the IV and the
secret are converted to the machine’s native format in lines 19 to 22. This is needed because
the md5 transform function that is built into the kernel implements one round of MD5
which, according to RFC 1321, works on blocks of size MD5 MESSAGE BYTES by interpreting
the data and the iv as 32-bit words in the CPUs native format to produce a hash of length
MD5 DIGEST WORDS many 32-bit words (i.e. MD5 DIGEST WORDS times 4 many bytes).

For the same reason (portability), the result of the MD5 round (now residing in iv)
is converted back to big endian and the accumulative exclusive or of the resulting 32-bit
words as specified by the formal Algorithms is performed. The only point where the
current TCP Stealth mode matters is when the ISN is output: Only ff integrity checking is

19



4 Implementation 4.1 Kernel Space

desired the second 16-bit word (in network byte order) of the resulting ISN is replaced
with the 16 bits of the integrity hash IH (in network byte order). Afterwards the result is
converted to the machine’s native byte order and is returned to the caller.

1 u32 t cp stea l th sequence number ( s t r u c t sock ∗sk , be32 ∗daddr , u32 daddr size ,
2 be16 dport , u32 t s v a l )
3 {
4 s t r u c t t cp sock ∗ tp = t c p s k ( sk ) ;
5

6 u32 sec [MD5 MESSAGE BYTES / s i ze of ( u32 ) ] ;
7 u32 i ;
8

9 be32 iv [MD5 DIGEST WORDS] = { 0 } ;
10 be32 i s n ;
11

12 memcpy( iv , ( const u8 ∗ ) daddr ,
13 ( daddr size > s i ze of ( iv ) ) ? s i ze of ( iv ) : daddr size ) ;
14

15 ( ( be16 ∗ ) iv ) [ 2 ] ˆ= cpu to be16 ( tp−>s t e a l t h . i n t e g r i t y h a s h ) ;
16 iv [ 2 ] ˆ= cpu to be32 ( t s v a l ) ;
17 ( ( be16 ∗ ) iv ) [ 6 ] ˆ= dport ;
18

19 for ( i = 0 ; i < MD5 DIGEST WORDS ; i ++)
20 iv [ i ] = l e 3 2 t o c p u ( iv [ i ] ) ;
21 for ( i = 0 ; i < MD5 MESSAGE BYTES / s i ze of ( l e 3 2 ) ; i ++)
22 sec [ i ] = l e 3 2 t o c p u ( ( ( l e 3 2 ∗ ) tp−>s t e a l t h . s e c r e t ) [ i ] ) ;
23

24 md5 transform ( iv , sec ) ;
25

26 i sn = cpu to be32 ( iv [ 0 ] ) ˆ cpu to be32 ( iv [ 1 ] ) ˆ
27 cpu to be32 ( iv [ 2 ] ) ˆ cpu to be32 ( iv [ 3 ] ) ;
28

29 i f ( tp−>s t e a l t h . mode & TCP STEALTH MODE INTEGRITY)
30 b e 3 2 i s n t o b e 1 6 i h ( i s n ) =
31 cpu to be16 ( tp−>s t e a l t h . i n t e g r i t y h a s h ) ;
32

33 return be32 to cpu ( i s n ) ;
34

35 }

Listing 1: Source code of the function tcp stealth sequence number

tcp stealth integrity This function is responsible for calculating the integrity hash IH. It
does so by applying the steps specified by Algorithms 1 and 2 on the input parameters.

tcp stealth integrity

Declaration include/net/tcp.h
Definition net/ipv4/tcp.c
Xrefs do tcp setsockopt, tcp stealth integrity check

Callees crypto alloc hash, sg init table, sg set buf, crypto hash digest,
crypto free hash

Parameters be16 *hash a pointer to a memory location where the integrity
hash IH will be stored

u8 *secret a pointer to the TCP Stealth secret
u8 *payload a pointer to a memory location holding at least len

bytes of the payload that should be hashed
int len the number of bytes which should be hashed

Return Value zero if construction of the IH succeeded, an error number otherwise

Table 2: Summary of function tcp stealth integrity
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The function as shown in Listing 2 starts with the declaration of several local variables
on the stack: a struct scatterlist sg of size two is needed to supply pointers to the
distributed data in memory for hashing. The struct crypto hash *tfm and the struct

hash desc desc belong to the kernel’s crypto API [20] and describe the state of the hash
function. The array h is used to store the resulting hash – it is declared to be of type be16

which allows accessing the hash in a way which allows us to perform the 16-bit-wise
accumulation using exclusive or operations as introduced by the algorithms in section 3.4.
The local integers i and err are used as a loop counter and to hold error codes that might
arise during the computation.

The construction of the hash is straightforward: lines 10 to 16 allocate an instance
of the MD5 hash function and initialize the needed structures in the descriptor of the
hash function. In lines 18 to 20 the scatterlist is initialized to refer to the secret and the
payload respectively. Using a scatterlist is advantageous as it drops the need to copy the
data into a contiguous block before hashing. By calling crypto hash digest in line 22, the
concatenation of MD5 MESSAGE BYTES many bytes of the secret and len many bytes of the
payload are finally hashed using MD5.

Afterwards lines 27 to 29 combine each of the eight 16-bit words of the MD5 hash
using the exclusive or operator after converting the output of the hash function to its
native byte order first. (This is because the final destination of the integrity hash IH, the
struct stealth is defined to hold the IH in host byte order.)

1 i n t t c p s t e a l t h i n t e g r i t y ( u16 ∗hash , u8 ∗ s e c r e t , u8 ∗payload , i n t len )
2 {
3 s t r u c t s c a t t e r l i s t sg [ 2 ] ;
4 s t r u c t crypto hash ∗ tfm ;
5 s t r u c t hash desc desc ;
6 be16 h [MD5 DIGEST WORDS ∗ 2 ] ;
7 i n t i ;
8 i n t e r r = 0 ;
9

10 tfm = c r y p t o a l l o c h a s h ( ”md5” , 0 , CRYPTO ALG ASYNC) ;
11 i f ( IS ERR ( tfm ) ) {
12 e r r = −PTR ERR ( tfm ) ;
13 goto out ;
14 }
15 desc . tfm = tfm ;
16 desc . f l a g s = 0 ;
17

18 s g i n i t t a b l e ( sg , 2 ) ;
19 s g s e t b u f (&sg [ 0 ] , s e c r e t , MD5 MESSAGE BYTES) ;
20 s g s e t b u f (&sg [ 1 ] , payload , len ) ;
21

22 i f ( c r y p t o h a s h d i g e s t (&desc , sg , MD5 MESSAGE BYTES + len , ( u8 ∗ )h ) ) {
23 e r r = −EFAULT ;
24 goto out ;
25 }
26

27 ∗hash = be16 to cpu ( h [ 0 ] ) ;
28 for ( i = 1 ; i < MD5 DIGEST WORDS ∗ 2 ; i ++)
29 ∗hash ˆ= be16 to cpu ( h [ i ] ) ;
30

31 out :
32 c r y p t o f r e e h a s h ( tfm ) ;
33 return e r r ;
34 }

Listing 2: Source code of the function tcp stealth integrity

Finally the label out marks the cleanup procedure that remains to be done: The
allocated hash function is released and (consequently) kernel memory is freed. The return
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value err is initialized to zero and thus is still zero if hashing was successful or an error
code if hashing failed for some reason.

tcp stealth do auth This function is called by the server side in order to authenticate the
connection request of a client. This is done by checking if the AV meets the requirements
imposed by sections 3.3 and 3.4.

tcp stealth do auth

Declaration include/net/secure seq.h
Definition net/core/secure seq.c
Xrefs tcp parse tsval option, tcp stealth sequence number, printk
Callees tcp v4 do rcv, tcp v6 do rcv

Parameters struct sock *sk a pointer to a TCP Stealth enabled listening socket
struct sock

struct sk buff *skb a pointer to a struct sk buff which holds the
contents of the SYN packet whose ISN should be
checked

Return Value zero if authentication was successful, nonzero otherwise

Table 3: Summary of function tcp stealth do auth

The function as shown in Listing 3 starts with the allocation of the local stack variables.
A pointer to a struct tcp sock *tp is derived from the general-purpose socket in order
to have the TCP Stealth related state information available. Afterwards, a pointer to the
TCP header within the received SYN segment is assigned to the struct tcphdr *th.
Finally space for two big endian 32-bit words is allocated: The first be32 isn holds a
copy of the ISN received by the server in network byte order and the second be32 hash

will be used to store the authenticator derived from the TCP Stealth parameters.
As (according to sections 3.3 and 3.4) the timestamp is needed to calculate the AV,

the TCP header options of the received SYN segment need to be parsed. This is done in
line 9 by calling tcp parse tsval option which places the result (the TSVal field of the
timestamp option) in host byte order in the tsval field of the struct stealth associated
with the TCP socket tp.

The one-setting of the TCP STEALTH MODE INTEGRITY LEN bit in the current TCP Stealth
operation mode indicates that integrity protection should be performed – thus the second
16-bit word of the ISN is used as the integrity hash IH for payload protection once the first
segment carrying data arrives. This is done in lines 11 to 12.

The core of the function is to verify the correctness of the AV. Lines 14 to 34
first check if the current socket uses IPv4 or IPv6 as network layer protocol and call
tcp stealth sequence number in order to compute the expected AV from the TCP Stealth
parameters (destination IP and port of the incoming SYN segment, timestamp and PSK).
The parameters for the called function are derived from the the IP and TCP headers of the
incoming packet/segment using the ip hdr and ipv6 hdr macros provided by the kernel.
In case of a network layer protocol different from IPv4 or IPv6, a warning is printed into
the local kernel log file (dmesg) and the authentication consequently fails by returning
one.

The result of the computation (AV) stored in hash is then checked against the AV sent
by the client. If integrity protection is enabled, only the first 16-bit words of the calculated
and the received AV are compared. Otherwise, if only authentication should be provided,
the full 32-bits of the AVs are computed. If the respective comparison yields true, zero
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is returned to signal a successful authentication to the calling function. Lines 36 to 44
implement the compare logic. If the function end is reached, one is returned in order to
indicate that authentication has failed.

1 u32 t c p s t e a l t h d o a u t h ( s t r u c t sock ∗sk , s t r u c t s k b u f f ∗skb )
2 {
3

4 s t r u c t t cp sock ∗ tp = t c p s k ( sk ) ;
5 s t r u c t tcphdr ∗ th = tcp hdr ( skb ) ;
6 be32 i s n = th−>seq ;
7 be32 hash ;
8

9 t c p p a r s e t s v a l o p t i o n (&tp−>s t e a l t h . t s v a l , th ) ;
10

11 i f ( tp−>s t e a l t h . mode & TCP STEALTH MODE INTEGRITY LEN)
12 tp−>s t e a l t h . i n t e g r i t y h a s h = be16 to cpu ( b e 3 2 i s n t o b e 1 6 i h ( i s n ) ) ;
13

14 switch ( tp−>ine t conn . i c s k i n e t . sk . sk fami ly ) {
15 # i f IS ENABLED ( CONFIG IPV6 )
16 case PF INET6 :
17 hash = cpu to be32 ( tcp stea l th sequence number ( sk ,
18 ipv6 hdr ( skb )−>daddr . s6 addr32 ,
19 s i ze of ( ipv6 hdr ( skb )−>daddr . s6 addr32 ) ,
20 th−>dest , tp−>s t e a l t h . t s v a l ) ) ;
21 break ;
22 # endif
23 case PF INET :
24 hash = cpu to be32 ( tcp stea l th sequence number ( sk ,
25 &ip hdr ( skb )−>daddr ,
26 s i ze of ( ip hdr ( skb )−>daddr ) ,
27 th−>dest , tp−>s t e a l t h . t s v a l ) ) ;
28 break ;
29 default :
30 /∗ We don ’ t a u t h e n t i c a t e unknown network l a y e r p r o t o c o l s ∗ /
31 pr intk ( ”TCP S t e a l t h : WARNING − Unknown network l a y e r protocol ,\n” ) ;
32 pr intk ( ”TCP s t e a l t h w i l l not work as expected !\n” ) ;
33 return 1 ;
34 }
35

36 i f ( tp−>s t e a l t h . mode & TCP STEALTH MODE AUTH &&
37 tp−>s t e a l t h . mode & TCP STEALTH MODE INTEGRITY LEN &&
38 ( b e 3 2 i s n t o b e 1 6 a v ( i s n ) == b e 3 2 i s n t o b e 1 6 a v ( hash ) ) )
39 return 0 ;
40

41 i f ( tp−>s t e a l t h . mode & TCP STEALTH MODE AUTH &&
42 ! ( tp−>s t e a l t h . mode & TCP STEALTH MODE INTEGRITY LEN) &&
43 ( i s n == hash ) )
44 return 0 ;
45

46 return 1 ;
47 }

Listing 3: Source code of the function tcp stealth do auth

tcp stealth integrity check This function is called by the TCP Stealth server in order
to ensure the integrity of the first bytes sent by the client. This is done by checking if the
IH meets the requirements imposed by section 3.4. Table 4 shows the summary of of the
function.

In the local variables area a pointer to the TCP header within the received data segment
is assigned to the struct tcphdr *th. Afterwards a pointer to a struct tcp sock *tp

is derived from the general-purpose socket in order to have the TCP Stealth related state
information available. The variable be32 seq filled with a copy of the next sequence
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tcp stealth integrity check

Declaration net/ipv4/tcp input.c
Definition net/ipv4/tcp input.c
Xrefs tcp data queue, tcp rcv established

Callee tcp stealth integrity

Parameters struct sock *sk a pointer to a TCP Stealth enabled receiving socket
struct sock

struct sk buff *skb a pointer to a struct sk buff which holds the con-
tents of the first data segment sent by the client

Return Value zero if integrity checking was successful, nonzero otherwise

Table 4: Summary of function tcp stealth integrity check

number expected from the client and decremented by one. This is done because the
value of the original ISN carries the integrity hash and the sequence number of the
first data segment always corresponds to ISN+1 (compare Figure 1) the ISN can be
reconstructed from the expected sequence number by subtracting one. The pointer char
*data is initialized to point at the beginning of the TCP payload before the length of the
received data segment int len is determined by subtracting the header size in bytes (thus
the multiplication by 4) from the total size of the segment.

Lines 10 to 11 check if the number of payload bytes is sufficiently large to contain at
least as many bytes as should be integrity protected by TCP Stealth followed by a call to
tcp stealth integrity which calculates the IH of the received payload. If the payload
is too small or hashing does not succeed, one is returned to the caller to indicate that
integrity checking failed. The comparison of the calculated IH and the original IH from the
first SYN segment is evaluated in line 17: In case the second 16-bit word (in network byte
order) of the sequence number does not match the calculated hash the function indicates
the integrity check failure by returning 1 to the caller.

Finally, if the function end is reached, the integrity protection has been successful and
therefore is deactivated such that TCP Stealth falls back to normal TCP.

1 s t a t i c i n t t c p s t e a l t h i n t e g r i t y c h e c k ( s t r u c t sock ∗sk , s t r u c t s k b u f f ∗skb )
2 {
3 s t r u c t tcphdr ∗ th = tcp hdr ( skb ) ;
4 s t r u c t t cp sock ∗ tp = t c p s k ( sk ) ;
5 u16 hash ;
6 be32 seq = cpu to be32 ( TCP SKB CB ( skb )−>seq − 1) ;
7 char ∗data = skb−>data + th−>doff ∗ 4 ;
8 i n t len = skb−>len − th−>doff ∗ 4 ;
9

10 i f ( len < tp−>s t e a l t h . i n t e g r i t y l e n )
11 return 1 ;
12

13 i f ( t c p s t e a l t h i n t e g r i t y (&hash , tp−>s t e a l t h . s e c r e t , data ,
14 tp−>s t e a l t h . i n t e g r i t y l e n ) )
15 return 1 ;
16

17 i f ( b e 3 2 i s n t o b e 1 6 i h ( seq ) != cpu to be16 ( hash ) )
18 return 1 ;
19

20 tp−>s t e a l t h . mode &= ˜TCP STEALTH MODE INTEGRITY LEN ;
21 return 0 ;
22 }

Listing 4: Source code of the function tcp stealth integrity check

24



4 Implementation 4.1 Kernel Space

tcp parse tsval option This function is called by the TCP Stealth server in order to
determine if the incoming SYN segment contains a timestamp optional header and if so,
returns the value of the TSVal field.

tcp parse tsval option

Declaration include/net/tcp.h
Definition net/ipv4/tcp input.c
Xrefs tcp stealth do auth

Callees none
Parameters u32 tsval * a pointer to a memory location where the parsed

timestamp will be stored
struct tcphdr *th a pointer to the TCP header of the segment that

should be parsed
Return Value false (zero) if no timestamp option could be found, true (nonzero) other-

wise

Table 5: Summary of function tcp parse tsval option

The function in Listing 5 starts with determining the size of the TCP options int

lenght in the segment to be parsed. This is done by subtracting the (fixed) TCP header
size from the data offset measured in bytes (thus the multiplication by 4). The pointer
const u8 *ptr is inizialized to reference the first byte after the TCP header (note how the
cast is applied after the increment of one).

In the case of the area of TCP options being smaller than the size of a TCP timestamp
option, the function immediately returns false.

Lines 10 to 33 form a loop which successively reads the current byte to be parsed from
the TCP options area followed by an increment of the pointer.

Sensible TCP options are defined to start with a unique one byte identifier (referred to
as int opcode followed by the size of the option including the identifier in bytes. This rule
applies to all TCP options but the special option TCPOPT NOP which has no special meaning
and never is followed by a size parameter as well as the option TCPOPT EOL which denotes
the end of the list of TCP options. The code in lines 15 to 19 skips all TCPOPT NOP options
and returns immediately if the end of the list option is encountered.

In case the opcode denotes a TCP timestamp option (TCPOPT TIMESTAMP) the size
parameter is constrained to two properties: First, it needs to be exactly the size of the
TCPOPT TIMESTAMP and second it may not be larger than the amount of remaining bytes
that still need to be parsed. If these two requirements are met, the code dereferences the
location behind the opsize parameter to a 32-bit word in network byte order, converts
it to host byte order (using the macro get unaligned be32) and returns execution to the
caller indicating that the timestamp value has been parsed successfully.

If the parser finds a option which does not equal any of the three cases above, it
simply reads the size parameter of the TCP option, validates that it is greater than two
(the minimum size of a TCP option consisting only of opcode as well as opsize) and also
smaller or equal to the amount of bytes that still wait to be parsed. If this is applicable
then the pointer is increased by the size of the unknown option (in order to skip to the
next option) and the number of remaining bytes is adjusted.

The while loop is exited as soon as there are no more bytes that remain to be parsed
(length >= 0) and returns false as the control flow never reaches the function end if the
option list contains a (benign) timestamp.

25



4 Implementation 4.1 Kernel Space

1 const bool t c p p a r s e t s v a l o p t i o n ( u32 ∗ t s v a l , const s t r u c t tcphdr ∗ th )
2 {
3 i n t length = ( th−>doff << 2) − s i ze of (∗ th ) ;
4 const u8 ∗ptr = ( const u8 ∗ ) ( th + 1) ;
5

6 /∗ I f t h e TCP o p t i o n i s t o o s h o r t , we can s h o r t c u t ∗ /
7 i f ( length < TCPOLEN TIMESTAMP)
8 return f a l s e ;
9

10 while ( length > 0) {
11 i n t opcode = ∗ptr ++;
12 i n t opsize ;
13

14 switch ( opcode ) {
15 case TCPOPT EOL :
16 return f a l s e ;
17 case TCPOPT NOP :
18 length−−;
19 continue ;
20 case TCPOPT TIMESTAMP :
21 opsize = ∗ptr ++;
22 i f ( opsize != TCPOLEN TIMESTAMP | | opsize > length )
23 return f a l s e ;
24 ∗ t s v a l = get unal igned be32 ( ptr ) ;
25 return t rue ;
26 default :
27 opsize = ∗ptr ++;
28 i f ( opsize < 2 | | opsize > length )
29 return f a l s e ;
30 }
31 ptr += opsize − 2 ;
32 length −= opsize ;
33 }
34 return f a l s e ;
35 }

Listing 5: Source code of the function tcp parse tsval option

4.1.3 Modified Functions

In summary, nine functions are modified by the patch, four to establish the client’s func-
tionality, four at the server side and the handler of the setsockopt system call.

Modifications to the Client TCP Stack In order to generate ISNs for outgoing connec-
tions as required by TCP Stealth, function calls are added to the functions tcp v4 connect

and tcp v6 connect. In case at least TCP Stealth authentication is enabled on the socket,
the normal generation algorithm secure tcp sequence number is replaced by a call to
tcp stealth sequence number. As one of the parameters of the ISN generation algorithm,
the exact value of the TCP timestamp value that is going to be added to the SYN segment
needs to be known. In Linux, the TCP timestamp is simply a snapshot of the current
uptime in jiffies (see [18], Chapter 10) - consequently, the taking of the snapshot needs to
be done before the ISN is generated. The current implementation in the Linux kernel takes
the snapshot right when the SYN packet is put on the wire, which is too late. To complicate
things, the kernel may decide that it sends out the SYN without a timestamp option even
though it would be available. Precisely, the timestamp option is only appended to the
TCP header if the related sysctl3 is set to one and if the TCP MD5 signature option [12] is

3/proc/sys/net/ipv4/tcp timestamps
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disabled for the current socket. Therefore the patch introduces code which always stores
the TCP timestamp snapshot in struct stealth and then performs the checks in order to
decide if the TCP timestamp option is going to be used and consequently either passes the
timestamp value or a zero constant to the tcp stealth sequence number function.

The fact that the timestamp value has to be known as early as possible to TCP Stealth
leads to the modification of the function tcp connect: As the timestamp is taken before ISN
generation for TCP Stealth sockets, the kernel should always use the timestamp value held
by struct stealth at the original point where it would normally obtain the snapshot for
the TCP timestamp.

Another modification related to TCP timestamps concerns retransmissions. If the
SYN segment of a connection request does not reach the destination host the TCP stack
triggers a SYN retransmit. Retransmissions are implemented by a timer callback function
named tcp retransmit skb. In case of a SYN retransmit the kernel will generate a new
timestamp for the retransmitted SYN segment which still holds the ISN of the original
connection attempt potentially breaking TCP Stealth. The patch edits the retransmission
function to check if the socket on which the SYN loss occurred operates in TCP Stealth
mode. If appropriate, the original timestamp from struct stealth is reused, if not, the
new SYN segment is constructed to contain a fresh timestamp.

Modifications to the server TCP stack The additions to the server are twofold: The first
piece enables authentication directly after receiving a connection request from a client, the
other piece concerns integrity protection at the time the first data segment arrives.

The code which is responsible for accepting connections is located in tcp v4 do rcv

and tcp v6 do rcv for IPv4 and IPv6 respectively. The patch therefore adds code to these
two function which checks if the socket is in LISTEN state, if the SYN flag in the received
payload is set and if TCP Stealth is activated on the socket. If all of these conditions are
met the server checks the authenticator by calling tcp stealth do auth and depending
on the result either immediately triggers a reset (authentication failed) or lets the control
flow proceed (authentication successful).

The remaining two modifications both concern integrity checking. The kernel waits
for the first data from the client and checks via tcp stealth integrity check if the
received data hashes to the expected integrity protector value. The reason why we need
two modifications to achieve this is that the TCP implementation in the kernel is highly
optimized: It features a fast path which only handles the most common events that may
occur during a TCP session and falls back to a slow path only if data is sent which
the fast path cannot handle. The integrity check for the fast path is placed in function
tcp rcv established whereas the check for the slow path is placed in tcp data queue.
The inserted lines of code are equivalent and simply check if the receiving socket has
the TCP Stealth integrity protection mode enabled and call the function named at the
beginning of this paragraph in order to verify the integrity of the payload. If the verification
fails, the packet is dropped and the connection is reset.

Modifications to the setsockopt system call The setsockopt handler is extended to
recognize three new socket options:

1. The TCP STEALTH option to specify the TCP Stealth secret. It first checks if the user
supplied at least as many bytes as the MD5Transform function needs to operate on
(see section 3) and copies exactly one block of data (MD5 MESSAGE BYTES bytes) into
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the struct stealth associated with the socket on which the setsockopt was called
on. To prevent potential race conditions, the data is first copied into a local buffer
on the stack, then the socket is locked by a mutex, then the data is copied into the
buffer in struct stealth, then the flag that signals the TCP Stealth authentication
mode is set on the socket finally followed by the unlocking of the socket.

2. The TCP STEALTH INTEGRITY option to specify the TCP Stealth payload which first
locks the socket followed by checks if authentication is enabled on the socket and
if the length of the supplied payload is bound by sensible values. Afterwards
a memory block is allocated and the user payload is copied in. The function
tcp stealth integrity calculates the integrity hash from the supplied payload
and assigns the result to the struct stealth. Eventually, the integrity protection
mode bit is set in the TCP Stealth state information before the allocated memory is
freed and the socket is unlocked.

3. The TCP STEALTH INTEGRITY LEN to activate integrity checking on the server side.
This setsockopt handler sets TCP STEALTH MODE INTEGRITY LEN flag as the operation
mode of TCP Stealth and assigns the number of bytes to protect to struct stealth.
Note that no locking is done in the handler itself as there is a combination of
lock sock and release sock calls surrounding the whole switch statement.

4.1.4 New Compiler Macros

Besides the function executed at run-time the patch also adds several compiler macros:

1. The constants passed to setsockopt TCP STEALTH, TCP STEALTH INTEGRITY and
TCP STEALTH INTEGRITY LEN are defined as three consecutive numbers following
the last defined setsockopt option number. At the time of writing (kernel 3.16) the
values 26 to 28 are used.

2. The macros be32 isn to be16 av and be32 isn to be16 ih which extract the au-
thentication vector AV or the integrity hash IH from a given sequence number in
network byte order. As the names of the constants indicate, the result also is in
network byte order.

4.1.5 Additional Modifications

Amongst the insertion of new functions and the modification of existing functions, the
patch adds two more code snippets.

The first one is a kernel structure representing a TCP socket (struct tcp sock) is
extended to hold additional TCP Stealth information as shown in Listing 6.
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1 s t r u c t {
2 # def ine TCP STEALTH MODE AUTH BIT ( 0 )
3 # def ine TCP STEALTH MODE INTEGRITY BIT ( 1 )
4 # def ine TCP STEALTH MODE INTEGRITY LEN BIT ( 2 )
5 i n t mode ;
6 u8 s e c r e t [MD5 MESSAGE BYTES ] ;
7 s i z e t i n t e g r i t y l e n ;
8 u16 i n t e g r i t y h a s h ;
9 u32 t s v a l ;

10 } s t e a l t h ;

Listing 6: Definition of the struct stealth structure in the kernel representing TCP Stealth state
information

The names of the members of the structure are more or less self-explanatory. The
int mode is a bitfield which indicates if only authentication or additionally integrity
checking is desired. The corresponding possible values for mode are defined directly
above where TCP STEALTH MODE INTEGRITY and TCP STEALTH MODE INTEGRITY LEN are
mutually exclusive as they define if the associated socket acts as a TCP Stealth client
or server, respectively. The array u8 secret and the variables size t integrity len,
int integrity hash and u32 tsval are the locations where the TCP Stealth secret, the
number of bytes to be integrity protected, the integrity hash itself and the (received or
generated) timestamp are stored.

The second (and last) snippet that is being inserted by the patch is a new ker-
nel configuration option called TCP STEALTH. Using this option the user can choose
whether the kernel should be compiled with TCP Stealth support enabled. The option
can be found in Networking Support > Networking Options > TCP/IP networking >

TCP: Stealth TCP socket support – by default the kernel is compiled without TCP
Stealth support.

4.2 User Space
As mentioned earlier, there also exists user space code called libknockify. The user land part
is available in form of a dynamic library which can be used at compile or run time to enable
applications to use TCP Stealth without changing a single line of code. For the usage of
this library please refer to section 6.3, this section only outlines the implementation details
of the library itself.

4.2.1 Design

The design of libknockify handles two scenarios: The case in which TCP Stealth authenti-
cation should be added to a program and the more complex case in which additionally
integrity protection should be added.

The first case wraps the socket call of the network API such that after the creation of
a TCP socket setsockopt with option TCP STEALTH is called. The library passes the user
defined secret to the kernel in order to activate the authentication mode of TCP Stealth.
This applies symmetrically to the client and the server side.

The second case additionally aims to provide integrity protection. With reference to
the designated setsockopt call the reader may well ask how the application can specify
payload to be protected that is not known by the time the socket is not even connected yet.
The trick here is to wrap the connect call such that it indicates success to the application
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even though the connect internally never has taken place. By the time the application
starts sending data over the allegedly connected socket, libknockify buffers the data. As
soon as a sufficient amount of data has been buffered, libknockify executes setsockopt

with option TCP STEALTH INTEGRITY and specifies the buffered payload to the kernel.
Afterwards it catches up on calling connect and send to complete the activation of TCP
Stealth authentication and integrity protection.

A TCP Stealth server which is to communicate with integrity protection enabled
calls setsockopt with option TCP STEALTH INTEGRITY LEN in the wrapper function of the
listen call.

4.2.2 Overridden Functions

All in all, ten functions are wrapped with the following (briefly described) functionality:

1. A call to setsockopt is made after the socket call to enable authentication and the
socket is added to the list of TCP Stealth sockets.

2. connect pretends that the connect has taken place even though it is delayed inter-
nally if integrity protection should be activated.

3. listen is prepended by a setsockopt if integrity protection is desired.

4. The send call is responsible for buffering data received from the application (if a
connect is delayed) and for performing the actual connect as soon as enough data
has been provided.

5. write is emulated by send.

6. sendto is emulated by send.

7. getsockopt is modified to always return a zero (no error) if the application tries to
determine the error state of a socket on which a connect has been delayed.

8. If the application calls close on a socket it is removed from the list of TCP Stealth
sockets.

9. The result of the epoll wait call is filtered to indicate that any socket with a delayed
connect is ready to be written to and not ready to be read from

10. The result of the select call is filtered to indicate that any socket with a delayed
connect is ready to be written to and not ready to be read from.

The functions overridden by libknockify are listed and described in more detail in
Table 6. For even more details, refer to the following section containing a full flow chart
which depicts the inner workings of libknockify.

4.2.3 Flow Chart

The flow charts depicted in Figures 29 and 30 provide further details on the implementa-
tion of libknockify. The usual elements are used: Boxes indicate states whereas diamonds
symbol decisions within the control flow. Unconditional jumps are colored black, the
branches of a conditional jump are colored red and green. Control is returned to the
application during the phase between the yellow boxes.
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Function Wrapper Functionality

socket executes the original call, checks if the newly created socket is a
TCP socket, calls setsockopt and adds the socket to the list of
TCP stealth sockets

connect checks if the socket belongs to the list of TCP Stealth sockets,
executes the original call if integrity protection is disabled or
stores the function arguments and omits the connect otherwise

listen checks if the socket belongs to the list of TCP Stealth sockets,
executes setsockopt if integrity protection should be enabled,
finally executes the original call

write emulated by calling send

send checks if the socket belongs to the list of TCP Stealth sockets and
if integrity protection is active, returns minus one if there is no
delayed connect on the socket, stores the parameters of send for
later transmission, executes the delayed connect if enought data
has been provided, finally executes the original call

sendto emulated by calling send

getsockopt checks if the socket belongs to the list of TCP Stealth sockets,
returns zero if the error state of the socket is queried, executes the
original getsockopt otherwise

close checks if the socket belongs to the list of TCP Stealth sockets and
removes it from the list if applicable, finally executes the original
call

epoll wait executes the original call, loops over all sockets passed to the
original function, marks all sockets as writeable only where all of
the following is true: the socket belongs to the list of TCP Stealth
sockets, a connect has been delayed on the socket and the socket
has been marked readable or writeable by epoll wait

select executes the original call, loops over all sockets passed to the
original function, marks all sockets as writeable only where all of
the following is true: the socket belongs to the list of TCP Stealth
sockets, a connect has been delayed on the socket and the socket
has been marked readable or writeable by select

Table 6: List of functions overridden by libknockify
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Figure 29: Control flow diagram for the socket, connect, listen, close, select and epoll wait calls
in libknockify
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Figure 30: Control flow diagram for the getsockopt, send, sendto and write calls in libknockify
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5 Experimental Results

As outlined in Section 3.1 one of our goals is that TCP Stealth works well with existing
middleboxes. As the essential operation of a NAT box [8] is to change the source IP
address and (potentially) the source port for any packet that leaves the private network,
the algorithms outlined in Section 3.3 and 3.4 do not incorporate the former in the ISN
generation. However, NAT boxes (or middleboxes in general) are not bound to only change
the aforementioned fields. It might be possible that some NAT implementations out there
change any of the fields used in the ISN generation.

However, there are only certain special circumstances (such as tracking SIP and FTP
protocols) under which there are good technical reason for NAT implementations to do
this. The only NAT implementation that we know of which replaces ISNs independent of
the application-layer protocol is QEMU’s NAT for virtual machines. This likely happens
because QEMU guests leave some of the TCP logic (such as calculating checksums) to the
host operating system.

Aside from the use of NAT, transparent proxies may also cause the ISN to change.
However, a transparent proxy is equivalent to a man-in-the-middle attacker, so one would
probably not want TCP Stealth to support connections with such a device performing
active interception anyway.

5.1 Prior Work
The behavior of NAT boxes with respect to modifying ISN numbers and TCP timestamps
was previously studied in [13] by Honda et al. Honda et al. measure the fraction of ISN
values that pass unmodified through the internet dependent on the destination port. The
result can be found in Table 7. They state that 90% of the SYN segments within their data
passes NAT boxes without modification to the ISN for the unassigned TCP port 34343.
This share decreases to 85% and 73% when connecting to the well known ports 443 (https)
and 80 (http) respectively.

5.2 Test Design
We also performed a similar experiment, asking users to run a small program that would
assess the behaviour of the user’s connection and report it to our server. Note that when
we talk about NAT, we exclude DNAT where the middlebox changes the IP address or
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5 Experimental Results 5.2 Test Design

TCP Port

Behavior 34343 80 443

Unchanged 126 (93%) 116 (82%) 128 (90%)
Mod. outbound 5 (4%) 5 (4%) 6 (4%)
Mod. inbound 0 (0%) 1 (1%) 1 (1%)
Mod. both 4 (3%) 13 (9%) 7 (5%)
Proxy (probably mod. both) 0 (0%) 7 (5%) 0 (0%)

Total 135 (100%) 142 (100%) 142 (100%)

Table 7: Changes made to the ISN by middleboxes dependent on the destination port as measured by Honda
et al. [13]

TCP port of the destination. We also do not consider middleboxes that change the TCP
payload. Our experiment focuses on middleboxes deployed near the client or by network
providers (carrier-grade NAT). Thus, the goal of the experiment is simply to investigate
if the ISN or the TCP timestamp option is changed while a segment travels through the
Internet, before reaching the service provider.

In order to gain statistical relevance, we decided to run a public test and hence designed
a test which could be run on different operating systems (GNU/Linux, Android, OSX,
Windows) on different platforms.

The test sends out a TCP SYN packet (a probe) to one of our testing machines on
the Internet (which are known to be connected via routers that do not manipulate the IP
traffic) and extracts the following information from the packet as it is put onto the wire
using libpcap:

• The source address of the IP header. We need this to determine if the packet as it is
received by the server has been NATed at all.

• The ISN field of the TCP header

• The TSval field of the (optional) TCP timestamp header

• The Ethernet address of the network gateway which most likely performs the address
translation, as we would like to be able to group the results by manufacturer of
the NAT box and detect duplicate submissions. If a contributor for privacy reasons
decides not to transmit the Ethernet address, she can signal this to the test program
which then only transmits the organizationally unique identifier (OUI) [22] part of the
Ethernet address.

This 4-tuple gets transmitted to the server which performs the following steps:

1. Listening for SYN packets sent to the designated port

2. Extraction of the received source IP, ISN and TSval fields

3. Extraction of the sent source IP, ISN, TSval and the gateway’s Ethernet address from
the first packet carrying the payload sent by the client
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5 Experimental Results 5.3 Analysis of the Collected Data

4. Checking if the probe is valid. This is done by calculating Fletcher’s checksum [10] on
the data to prevent random port scans and potential exploits carrying data intended
for a different network service from polluting the results.

5. Checking if the source IP in the payload does not match the source IP observed by
the server (i.e. that the probe has travelled through a NAT at all). If the source IP did
not change, the probe and all data is discarded.

6. Performing a Geo IP lookup to get the originating country of the probe

7. Storing of the tuple T which holds the following information:

T = (hwaddrsent, ISNsent, ISNrecv,TSvalsent,TSvalrecv,

UNIX tstamp, checksum valid, geo string)

Afterwards the connection is closed as all relevant data has been collected.

5.3 Analysis of the Collected Data
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Figure 31: Plot of the absulute value and the absolute error of the ISN of each collected sample
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Figure 31 shows the qualitative change of the ISN occurring to any of the collected
probes. The x-axis denotes the ISN as it was sent by the client and the left y-axis denotes the
ISN as it was received by the server. The logarithmic right y-axis measures the deviation
of the sent and the received ISN. The black groups of hexadecimal digits right next to
the error bars indicate the organizationally unique identifier (OUI) of the gateway of the
sending side. Table 9 translates all OUIs found in this and the following graph to their
associated names. As can be seen from the diagram, the observed ISNs approximately
follow a uniform distribution across all possible values. Additionally, it can be observed
that there are four probes which arrived with a changed ISN. The diagram suggests that
there is no (obvious) correlation between the value of the sent ISN and the amount it
deviates from the original value when received by the server.
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Figure 32: Plot of the absolute value and the absolute error of the TSVal of each collected sample

Similarly, Figure 32 shows how the timestamp value changed for the probes travelling
through the internet (note the logarithmic scales). However, what’s worth mentioning is
that the average absolute error of the timestamp value (17214 ≈ 214.1) is much lower than
the absolute error observed for the ISN (1660517875 ≈ 230.6). Additionally, the timestamp
values are not uniformly distributed across all of the 232 possible values. This is natural as
the TCP timestamp correlates to the uptime of the sending host.

All in all, the collected data implies that TCP Stealth will work as expected when used
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Country None ISN only Stamp only Both Sum

Germany 22 1 1 1 25
France 6 1 2 0 9
United States 7 1 0 0 8
Hungary 4 0 0 0 4
Netherlands 4 0 0 0 4
Great Britain 2 0 0 0 2
Poland 2 0 0 0 2
Argentinia 1 0 0 0 1
Bermuda 1 0 0 0 1
Brazil 1 0 0 0 1
Switzerland 1 0 0 0 1
Czech Republic 1 0 0 0 1
Spain 1 0 0 0 1
Finland 1 0 0 0 1
Norway 0 0 1 0 1
Ireland 1 0 0 0 1
Italy 1 0 0 0 1
Russia 1 0 0 0 1
Slovakia 1 0 0 0 1
Unknown 2 0 0 0 2

Total 60 3 4 1 68

Table 8: Observed changes made by middle boxes

OUI Organization

00-00-00 XEROX CORPORATION
00-0c-42 Routerboard.com
00-22-63 Koos Technical Services, Inc.
00-24-e8 Dell Inc.
0c-60-76 Hon Hai Precision Ind. Co.,Ltd.
18-e7-28 Cisco
52-54-00 unknown
5c-0a-5b SAMSUNG ELECTRO-MECHANICS CO., LTD.

Table 9: Observed OUI numbers and their associated organizations

on the Internet. Table 8 shows that out of 68 collected samples, 3 (4%) arrived where solely
the ISN changed, whereas 4 (6%) samples indicated only a modification of the timestamp.
In one (additional) case (1%) both values changed. Consequently, 12% of the collected
samples arrived with at least one of the relevant values being altered.
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6 User Guide

This section is intended for users who wish to enable TCP Stealth on their machines. Below
follow detailed instructions on how the kernel can be patched and how user programs
can profit from the new functionality.

6.1 Patching the Kernel
As the mainline Linux currently does not offer support for Knock, the kernel of the ma-
chine which should be using Knock needs to be patched. Note, however that there is one
distribution, Parabola Linux [4], which incorporated support for Knock. If you are running
this distribution, you can simply install Knock using your favourite package manager.

For all other distributions, patching the kernel is straightforward:

1. First, obtain the sources of the desired kernel version from https://www.kernel.org

if you intend to use a vanilla running kernel. Note that many distributions make
adoptions to the kernel and therefore provide custom kernel sources, so one might
want to check for the curstomized kernel sources.

2. Once the kernel sources are available download the suitable Knock patch from
https://gnunet.org/knock. Note that if you intend to run a kernel version which is
not explicitly listed on the Knock website, the best option is to try out the patches of
the closest version provided (i.e. tcp stealth 3.10.diff for all kernels up to 3.11
and tcp stealth 3.12.diff for all kernels which are more recent than 3.11).

3. Change to the directory where the kernel sources reside (replace the
<your-version>-part according to your selection of the kernel- and the patch-
version) and apply the patches (you can find more information on how to apply and
revert patches on the kernel source in the kernel.org archives [14]):

1 ˜ $ cd l inux−<your−version>/
2 ˜/ l inux $ patch −p1 < /path/to/knock/patch/ t c p s t e a l t h <your−version >. d i f f

4. Get the configuration of the currently running kernel. There are two widely used
methods which can be used interchangeably:
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6 User Guide 6.1 Patching the Kernel

(a) Debianoids maintain a copy of the kernel configuration parameters in the /boot

directory. You can copy the config to your current kernel sources using the
following command:

1 ˜/ l inux $ cp /boot/config−$ (uname −r ) . conf ig

(b) Many other distributions compile the kernel with the possibility to read the
running kernel’s configuration from the /proc/ file system:

1 ~/linux $ zcat /proc/config.gz > .config

(c) If none of the cases above applies for your distribution, you can

try to use the default kernel configuration by entering

1 ~/linux $ make defconfig

however do not expect a convincing kernel to result from this, as

far as performance and stability are concerned.

5. Choose the defaults for all configuration parameters which are not in your current
configuration. A different kernel version might introduce new compile configuration
options:

1 ˜/ l inux $ yes ”” | make oldconf ig

6. Enable Knock in your current configuration by selecting Networking Support

> Networking Options > TCP/IP networking > TCP: Stealth TCP socket

support:

1 ˜/ l inux $ make menuconfig

7. The kernel is now ready for compilation. Enter

1 ˜/ l inux $ make bzImage && make modules

to compile the kernel and all additional modules. Be prepared that this step can take
a long time, especially on older (weaker) computers. If you have a machine with
more than one processor core, you can adjust the number of build threads using the
-j option to both make commands.

8. If compilation succeeded (it should), install the new kernel and all modules. After-
wards automatically create a new initramdisk for your newly compiled kernel. If you
have sudo installed, enter

1 ˜/ l inux $ sudo make i n s t a l l && sudo make m o d u l e s i n s t a l l

otherwise enter the these commands into a root prompt leaving both sudos.

9. Once the kernel is installed and modules are copied over make sure that the
TCP STEALTH constants are exported to the userspace such that setsockopt knows
about the new functionality of the kernel. As above, make sure you have root privi-
leges and enter

1 ˜/ l inux $ sudo make h e a d e r s i n s t a l l INSTALL HDR DIR=/usr
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6 User Guide 6.2 Minimal Knock Program

to install the headers into the /usr/include/linux directory. If,
for some reason, the headers can or should not be installed,
simply copy the definition of the three TCP STEALTH socket op-
tions from linux-<your-version>/include/uapi/linux/tcp.h to
/usr/include/linux/tcp.h.

10. Reboot the machine and instruct your boot manager to boot into the new kernel.
You now have a Knock aware machine. In order to understand how to use Knock in
userspace, please refer to Section 6.2 of this document.

6.2 Minimal Knock Program
This section introduces minimal examples of a server and a client which make use of
Knock’s basic functionality.

6.2.1 Minimal Knock Server

A minimal server program which makes use of Knock’s features needs to call setsockopt
twice: Once to enable authentication and a second time to deliver the number of payload
bytes for integrity protection. Listing 7 shows the relevant part of a minimal server. Code
for a full Knock server can be found in Listing 9 in Appendix A. (The definitions of the two
constants used in setsockopt can also be found there.)

24 char s e c r e t [ 6 4 ] = ” This i s my magic ID . ” ;
25 i n t payload len = 4 ;
26

27 sock = socket ( AF INET , SOCK STREAM, IPPROTO TCP ) ;
28 i f ( sock < 0) {
29 p r i n t f ( ” socket ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
30 return 1 ;
31 }
32

33 i f ( se tsockopt ( sock , IPPROTO TCP , TCP STEALTH , s e c r e t , s i ze of ( s e c r e t ) ) ) {
34 p r i n t f ( ” se tsockopt ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
35 return 1 ;
36 }
37 i f ( se tsockopt ( sock , IPPROTO TCP , TCP STEALTH INTEGRITY LEN ,
38 &payload len , s i ze of ( payload len ) ) ) {
39 p r i n t f ( ” se tsockopt ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
40 return 1 ;
41 }
42

43 i f ( bind ( sock , ( s t r u c t sockaddr ∗ ) &addr , s i ze of ( addr ) ) ) {
44 p r i n t f ( ”bind ( ) f a i l e d %s\n” , s t r e r r o r ( errno ) ) ;
45 return 1 ;
46 }
47

48 i f ( l i s t e n ( sock , 10) ) {
49 p r i n t f ( ” l i s t e n ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
50 return 1 ;
51 }
52

53 c l i e n t = accept ( sock , NULL, 0 ) ;

Listing 7: Minimal Knock server (truncated)

The sequence of the socket, bind, listen and accept libc-calls should be familiar. The
only part which is relevant for the functioning of Knock are the two setsockopt calls. The
TCP STEALTH socket option is used to tell Knock the pre-shared secret which will be used
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for authentication. As can be seen from the code, the secret needs to be a block of data
consisting of exactly 64 bytes. In this example the secret string “This is my magic ID” is
being used. Only applications which know the secret string can thus connect to this server.
In a real-world-scenario, the secret string could be set to something more secure such
as a byte sequence but it is important to notice that this is entirely the freedom of the
application programmer.

If only authentication of the communicating nodes should be guaranteed, no further
socket options need to be set. However, if additionally integrity checking is desired, Knock
also needs to be told the number of bytes which should be verified upon the arrival
of the first data packet. We explicitly state that any sane protocol should start with the
exchange of an ephemeral key in which case the server application would verify all bytes
of the key that is sent in the first packet of the client. To enable integrity checking the
programmer thus needs to hand over the expected key length of the protocol to Knock by
calling setsockopt with the parameter TCP STEALTH INTEGRITY LEN. We strongly encourage
any programmer who plans to use Knock to provide a key which is longer than the one
the example shows (4 bytes).

6.2.2 Minimal Knock client

All clients which should be capable of connecting to a Knock-protected service need to
call setsockopt twice. Similar to the server, the first call enables authentication whereas the
second call delivers the actual payload to the kernel to enable integrity checking. Naturally,
if integrity checking is a requirement then both – the client and the server – need to execute
the correct setsockopt calls as shown in Section 6.2.1. The core sequence of libc calls is shown
in Listing 8, for the full listing, the reader is asked to refer to Appendix A, Listing 10.

26 char s e c r e t [ 6 4 ] = ” This i s my magic ID . ” ;
27 char payload [ 4 ] = ” 1234 ” ;
28

29 sock = socket ( AF INET , SOCK STREAM, IPPROTO TCP ) ;
30 i f ( sock < 0) {
31 p r i n t f ( ” socket ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
32 return 1 ;
33 }
34

35 i f ( se tsockopt ( sock , IPPROTO TCP , TCP STEALTH , s e c r e t , s i ze of ( s e c r e t ) ) ) {
36 p r i n t f ( ” se tsockopt ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
37 return 1 ;
38 }
39 i f ( se tsockopt ( sock , IPPROTO TCP , TCP STEALTH INTEGRITY , payload ,
40 s i ze of ( payload ) ) ) {
41 p r i n t f ( ” se tsockopt ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
42 return 1 ;
43 }
44

45 i f ( connect ( sock , ( s t r u c t sockaddr ∗ ) &addr , s i ze of ( addr ) ) ) {
46 p r i n t f ( ” connect ( ) f a i l e d %s\n” , s t r e r r o r ( errno ) ) ;
47 return 1 ;
48 }

Listing 8: Minimal Knock client (truncated)

In Listing 8, the usual libc calls socket and connect can be observed. After creating the
socket, the first setsockopt specifies the pre-shared secret using the Knock’s TCP STEALTH

socket option number. As explained earlier, the secret needs to be a location in memory
holding exactly 64 bytes. As Knock authentication checking is performed symmetrically by
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the server and the client, the Knock secret on the client side needs to match the secret of
the server.

If additionally integrity checking should be employed, setsockopt with option
TCP STEALTH INTEGRITY needs to be called secondly. This call provides the data whose
integrity should be protected. In a real-world example, an application would put an
ephemeral key here in order to protect it against alteration. However, the example defines
the data 1234 to be integrity protected. Two consequences follow:

1. The first message the client is to send out using one of the designated libc calls must
start with those four bytes

2. The server side needs to be told that it should verify exactly four bytes of
the first payload data received from the client by using the setsockopt option
TCP STEALTH INTEGRITY LEN.

Afterwards, the application can communicate as desired.

6.3 Enabling Knock Using LD PRELOAD
Please note that the modification of the application itself is still preferable to the method
explained in this section. Minimal code examples which make use of Knock are given in
sections 6.2.1 and 6.2.2. These could be ported easily to existing code.

As mentioned earlier, Knock can also be used without having to modify the source
code of the program. This can be useful in cases where the source code is not available or
when inserting the needed libc calls is infeasible (for example due to restrictions imposed
by the application logic).

In order to use Knock in existing applications, a dynamic library is provided which is
referred to as libknockify (libknockify.so). libknockify can either be used at compile time
during linking or alternatively at runtime overriding the basic network API calls. Imple-
mentation specific details (such as a list of overridden functions) are given in section 4.2,
this section only outlines how libknockify can be used by the end user.

6.3.1 The GNU linker

In GNU/Linux, the GNU linker ld4 is responsible to resolve external symbols used by ap-
plications at run time (see Section 4.2 for details). During resolving ld supports overriding
arbitrary symbols with arbitrary code from a chosen shared library. Overriding is done
using the LD PRELOAD environment variable which is read by ld to determine the shared
object file which contains the declarations and definitions of the functions which should
be overridden Section 4.2 covers the implementation specific details of an LD PRELOAD

object.

6.3.2 Basic Usage

The basic usage of the libknockify shared object to enable Knock for program
example program is thus as follows:

1 $ LD PRELOAD=./ knockify . so ./ example program

4https://www.gnu.org/software/binutils/
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Name Mandatory Description

KNOCK LOGLVL No Defines how much output libknockify should produce. Choose a
value between 0 and 3 (inclusive) where three causes libknockify
to print out out all possible messages and zero silences
libknockify completely.

KNOCK SECRET Yes Specifies the secret that should be used by libknockify to au-
thenticate any connection initiated or accepted by the application.
Four formats are supported:

1. h:([0-9a-fA-F][0-9a-fA-F])+

Specifies the secret as a string of hexdigits

2. f:file

Specifies a secret as the contents of file file

3. No special prefix

Specifies a secret as raw bytes of a zero terminated
string

If by any of the above methods a secret of inappropriate size is
specified, the given secret is either padded with zeroes or trun-
cated after the 64th byte.

KNOCK INTLEN No Specifies how many bytes of the first message of any communica-
tion should be protected. A zero is equivalent to running Knock
with integrity checking disabled. The upper bound is protocol spe-
cific: A number greater than the minimal amount of data which
the client is to send before the server is expected to answer can
stall the connection (see section 3 to understand this behavior).

Table 10: Configuration Options supported by libknockify

If the application example program communicates in a way that Knock can support (see
section 3 for details) and libknockify is configured correctly (see section 6.3.3) then
example program has been successfully enabled to use Knock.

6.3.3 Options Supported by libknockify

Generally, arguments for libknockify can be specified in two ways: Either using envi-
ronment variables or line by line as key-value pairs of the format KEY=VALUE in a hidden
file called .knockrc which (by default) should reside in the current user’s home directory.
Table 10 explains the implemented instances of KEY and their respective associated VALUE

field.
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7 Related Work

Our design is closely related to SilentKnock [30], which is a TCP port knocking method
that also uses the ISN header to transmit an authenticator. Like the method used in this
paper, SilentKnock uses a cryptographic MAC of 32 bits for the authentication and hides
this MAC in a TCP SYN packet.

However, in 2007 when the SilentKnock paper was published, the TCP ISN generated
by the Linux kernel had only 24 bits of entropy. This forced the SilentKnock developers to
use 24 bits of the ISN and 8 bits of the TCP timestamp, which is an optional header field.
However, with modern Linux kernels the ISN has 32 bits of entropy and we thus do not
need the additional complexity and possible information leak that results from involving
a timestamp header in this way.

Unlike our design, SilentKnock does not work with clients behind NAT and uses a
complex user-space implementation instead of integrating with the Linux kernel directly.
SilentKnock also integrates replay protection using per-user counters, which creates
challenges due to the possibility of counter desynchronization between client and server.

BridgeSPA [28] is another port knocking mechanism which uses nearly the same
technique as SilentKnock. In contrast to SilentKnock, BridgeSPA embeds a timestamp to
avoid replay attacks. This reduces its use to time synchronized machines.

KnockKnock [19] is yet another scheme which hides the authenticator in the TCP ISN
number; however, it requires the client to send two SYN packets, the first to authenticate
and the second to connect to the now opened socket. Our implementation is called Knock
as it only uses a single SYN packet.
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8 Discussion

8.1 Hashing the Source Address
Presumably to increase the entropy of the generated ISN values, previous schemes such
as SilentKnock [30] generally included the source IP and source port in the calculation of
the ISN value. As a result, these designs break when clients are connecting to the server
from behind a router performing network address translation [8], as clients behind NAT
typically cannot easily predict the source address that will be seen by the server.

As a result, including the source address prevents about 90% of clients on the Internet
today from connecting to a hidden server protected by SilentKnock. Furthermore, an
adversary that is placed to observe the TCP SYN packet can typically easily fake the source
address, thus including it offers little additional security beyond making the ISN less
predictable.

Thus, TCP Stealth does not include the source address in the MAC, as this fails to
improve security against realistic adversaries while seriously limiting usability. To avoid
generating predictable ISN numbers, TCP Stealth uses the value of the TCP timestamp
option in the hash instead of the (random) source port. While the TCP timestamp value
might be predictable, the resulting ISN is still unpredictable as it is hashed with the shared
secret — as long as the delay between connections is large enough to allow the timestamp
clock to advance.

In conclusion, TCP Stealth in combination with either TCP timestamps or content
integrity protections over random content will generate (pseudo-)random, non-constant
ISNs for each connection. Only if neither the application payload nor timestamps nor
changes in the shared secret are available as a source of entropy, ISNs would remain
unchanged between connections.

8.2 Replay Attacks
Compared to SilentKnock [30] our design does not include sequence numbers to prevent
replay attacks. We believe that this is a good idea in practice, as many potential application
scenarios will include a single TCP server being used by many clients, and thus strong
replay protections in the kernel would mostly create a usability problem as clients would
somehow need to coordinate their use of shared secrets. Furthermore, having a large
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number of shared secrets increases the chance of success for an adversary to use a valid
ISN by chance.

Naturally, TCP Stealth still needs to defend against replay attacks, and saying that we
do not include sequence numbers should not mean that replay attacks are not considered.

However, to discuss replay attacks properly, we need to distinguish two types of
replay attacks. Typically, a successful replay attack of a port knock achieves two goals: it
confirms the existence of the service and allows the adversary to send arbitrary data to the
service, for example to exploit a vulnerability. Confirming the existence of a service to an
adversary who observed a successful TCP handshake is not particularly significant, so
for TCP Stealth we consider a replay attack as successful only if the attacker can actually
successfully communicate with the service.

Note that a typical replay attack defense using sequence numbers only works against
an adversary that is merely able to observe network traffic. For TCP Stealth, we are
considering a stronger adversary which is able to perform a man-in-the-middle attack
after the TCP SYN packet, this is a strictly stronger attack than replaying the TCP SYN
packet. The payload integrity protection provided by TCP Stealth also mitigates replay
attacks — assuming the application-level protocol begins its payload with key material
that is used to authenticate and integrity-protect the rest of the data exchange.

Alternatively, applications that require strict single-use shared secrets can still achieve
this by opening a fresh TCP server socket with a fresh secret after each successful con-
nection. Thus, the design of TCP Stealth does not exclude the use of replay-prevention
schemes of previous designs, and using single-use shared secrets is strongly recommended
if TCP Stealth without payload integrity protection is used.

8.3 On the Use of MD5
Some community members were surprised by our choice of MD5 for the hash function.
The primary reason for this choice was that a single round of MD5 is also used by
the Linux kernel for ordinary ISN generation and for TCP SYN cookies and thus the
respective computation time and bit patterns should be indistinguishable from ordinary
TCP connections. Furthermore, the use of a somewhat weak hash function has no real
downside, as the 32 bit values of the ISN hardly require a high-qualtiy hash function, as
the security is clearly primarily limited by the use of only 32 bits.

8.4 Kernel-space vs. User-space
A common objection against Knock is the need to modify the kernel. However, as long
as TCP is implemented inside the kernel, this is the simplest method to make it trivial
for users to deploy Knock. Implementing a TCP stack in user-space makes it easier to
detect the use of TCP Stealth by timing attacks, and may creates performance issues. Not
to mention that insecure networking code is a security problem inside and outside the
kernel alike. Having insecure networking code in an administrative service is likely to
grant administrative priviledges. Thus, we advocate that the focus should be on auditing
the code and making it easy to use and secure, and not on where it should run.
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8.5 Inter-Operability with SYN Cookies
SYN cookies are a technique to protect against SYN flooding DoS attacks. By design
they prevent the server from allocating any state information for an incoming connection
request until the other side has proven to be alive. The server responds to the connection
request with a challenge ISN which needs to be acknowledged correctly by the client.

Inter-Operability with TCP Stealth is given because our design only relies on the ISN
sent by the client: At the time time of authentication, the server simply checks the AV in the
received SYN segment. If after the first data segment from the client integrity protection
should be applied, the ISN (and by this the original value of the integrity hash) can be
reconstructed by subtracting one from the sequence number of the data segment received
from the client.

8.6 TCP Stealth and SSH: Application Protocols Matter!
While the use of integrity protections with TCP Stealth is technically optional, port knock-
ing without integrity protections offers little security against an adversary that observes
network traffic and hijacks connections after the initial TCP handshake. Thus, future
network protocols should be designed to exchange key material at the beginning of the
first TCP segment.

Sadly, this is not the case for SSH, which instead exposes a banner with version
information to an attacker way before the cryptographic handshake. Hence, design flaws
in the SSH protocol currently require the use of an additional obfuscation patch [3] to
effectively use TCP Stealth integrity protections with SSH.

8.7 On Modifying Applications
Some critics claimed that using Knock requires modifications to applications. The
libknockify library demonstrates that this is false: by pre-loading libknockify existing
legacy applications can be made to use Knock on GNU/Linux. However, for reasons of
usability we do advocate that application developers should make the necessary and
usually trivial modifications to explicitly support Knock.

8.8 Portability
We believe that the design of TCP Stealth is perfectly portable, and not limited to
GNU/Linux. We hope that this thesis and the draft protocol for TCP Stealth submit-
ted to the IETF [15] will help convince the community at large to develop and deploy
modifications to modern operating systems to support TCP Stealth.

8.9 Security by Obscurity
Some opinions on port knocking in general and TCP Stealth in particular say that the
design is based on security by obscurity. First, we want to make clear that security by
obscurity refers to believing that a system can be made more secure just by hiding it from
an attacker. While this is not inherently wrong (moving the SSH service away from port
22 certainly helps evading a large percentage of automated port scans), we explicitly state
that the port knocking method employed by TCP Stealth is not based on obscurity: Only
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a client in possession of the TCP Stealth secret is able to calculate the cryptographically
correct authentication vector. Thus, the security provided by TCP Stealth is based on a
(shared) secret, not on obscurity.

A similar argument states that the problem should be solved using a virtual private
network (VPN). Naturally, if users were to be able to deploy a secure VPN solution, that
would also help. However, we argue for defense in depth. After all, an even better defense
would be to just deploy secure application software. TCP Stealth is another tool, and
security professionals should choose a combination of appropriate tools against the threat
of colonization based on the needs, capabilities and budget of their organization.

8.10 Handling Server-Side NAT or Load Balancers
Currently, Knock does not work for services using server-side NAT (DNAT5) [25] or
load balancers. However, in principle TCP Stealth support can be integrated into the
rules for a DNAT or load balancer. Naturally, in this case it would not be the TCP server
providing the shared secret to the kernel via a socket option, but the DNAT or load
balancer configuration.

8.11 Attacks
Micahel Rash claimed6 that it would be possible to write a detector for TCP Stealth “under
the assumption that modern TCP stacks randomize ISN’s”. Under the assumptions that
TCP Stealth is used in combination with the TCP timestamp option, and that sessions
are not established at a frequency exceeding timestamp progression, and that the dis-
tinguishing attack is run against a kernel using a single round of MD5 to generate the
pseudo-random ISN, we question that it is possible to write such a detector.

Alternatively, we claim that even if the TCP timestamp option were not available, but
instead TCP Stealth’s content integrity protection is used with an application protocol that
begins with an integrity-protected random sequence, writing a passive distinguisher will
also fail.

5http://linux-ip.net/html/nat-dnat.html
6http://sourceforge.net/p/fwknop/mailman/message/31749987/
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9 Summary

We have presented TCP Stealth, a method for calculating TCP ISNs for port knocking and
payload authentication, and Knock, an implementation of TCP Stealth for Linux. Using
the techniques presented in this thesis, system administrators can harden their systems
by protecting internal TCP services against the criminal activities pursued by organized
crime syndicates national security services.

9.1 TCP Stealth is Stealthy
TCP traffic that is sent out by TCP Stealth differs in no way from normal patterns that
emerge during communication. This is to prevent a passive attacker who is able to follow
the entire communication from being able to tell an observed TCP Stealth enabled TCP
session from an ordinary TCP session. As a result, TCP Stealth avoids easy detection by a
passive attacker.

Naturally, an active attacker with observation capabilities may still be able to observe
the handshake, attempt to connect to a protected server and to jump at conclusions about
the use of TCP Stealth depending on whether the connection attempt was successful or
not. Still, this requires significantly more effort than the situation today.

9.2 TCP Stealth Protects the Payload
An active attacker who knows about the use of TCP Stealth is not generally able to reuse
parts of a recorded session of an authorized client to establish a connection to the TCP
Stealth protected service.

Instead of making the shared secret single-use, replay protection in TCP Stealth is
achieved by checking the integrity of the payload, which also provides protections against
man-in-the-middle attacks that try to hijack connections after the TCP SYN.

9.3 TCP Stealth is Easy to Use
Avoiding single-use secrets also improves usability, as ordinary users cannot be expected
to manage a set of rotating keys on multiple clients.
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Another usability issue of previous designs is that they often require administrators to
run additional services on the host (as in case of knockknock and knockd), require adjust-
ments to firewall settings, or to tinker with configuration files. In contrast, TCP Stealth
is designed to be trivial to configure and enable from both a user’s and a developer’s
perspective in order to minimize possible errors from these sources.

9.4 TCP Stealth Belongs in the Kernel
Any kernel-level implementation of port-knocking includes the risk of incorporating
devastating security flaws into the kernel. However, given the size of modern operating
systems, an analysis focusing on this danger alone is too narrow.7

In particular, a correct kernel-level implementation also offers unique advantages
compared to a user-space implementation, including ease-of-use for developers and
system administrators, simplicity of the code, and performance, all of which indirectly
help improve security.

Specifically, there are no inspection processes such as libpcap which would otherwise
have to be permitted to snoop on traffic. Inside the kernel, all checks can be performed
along the normal path of execution in the operating system’s TCP stack. Furthermore,
existing system calls can be extended to offer a simple and intuitive interface for applica-
tions, and system administrators do not need to worry about configuring and launching
additional services.

9.5 TCP Stealth works with NAT
Nowadays, most end-user devices access the Internet from behind a gateway router which
performs network address translation (NAT) (compare [29], Section 5.6.2). While TCP Stealth
was designed to avoid the use of information that is commonly altered by NAT devices,
some NAT devices modify TCP timestamps and ISNs and may thus interfere with the
port knocking mechanism.

7Moxie disagrees: http://www.thoughtcrime.org/software/knockknock/
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Appendix
A Minimal Examples of Server and Client Programs

1

2 # include <s t d i o . h>
3 # include <unistd . h>
4 # include <errno . h>
5 # include <s t r i n g . h>
6 # include <n e t i n e t /in . h>
7 # include <sys/ s e l e c t . h>
8

9 # define TCP STEALTH 26
10 # define TCP STEALTH INTEGRITY LEN 28
11

12 i n t main ( i n t argc , char ∗∗argv )
13 {
14 i n t sock , r e t v a l ;
15 i n t c l i e n t ;
16 unsigned char buf [ 5 1 2 ] ;
17 f d s e t r f d s ;
18

19 s t r u c t sockaddr in addr ;
20 addr . s i n f a m i l y = AF INET ;
21 addr . s i n p o r t = htons ( 8 0 8 0 ) ;
22 addr . s in addr . s addr=INADDR ANY;
23

24 char s e c r e t [ 6 4 ] = ” This i s my magic ID . ” ;
25 i n t payload len = 4 ;
26

27 sock = socket ( AF INET , SOCK STREAM, IPPROTO TCP ) ;
28 i f ( sock < 0) {
29 p r i n t f ( ” socket ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
30 return 1 ;
31 }
32

33 i f ( se tsockopt ( sock , IPPROTO TCP , TCP STEALTH , s e c r e t , s i ze of ( s e c r e t ) ) ) {
34 p r i n t f ( ” se tsockopt ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
35 return 1 ;
36 }
37 i f ( se tsockopt ( sock , IPPROTO TCP , TCP STEALTH INTEGRITY LEN ,
38 &payload len , s i ze of ( payload len ) ) ) {
39 p r i n t f ( ” se tsockopt ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
40 return 1 ;
41 }
42

43 i f ( bind ( sock , ( s t r u c t sockaddr ∗ ) &addr , s i ze of ( addr ) ) ) {
44 p r i n t f ( ”bind ( ) f a i l e d %s\n” , s t r e r r o r ( errno ) ) ;
45 return 1 ;
46 }
47

48 i f ( l i s t e n ( sock , 10) ) {
49 p r i n t f ( ” l i s t e n ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
50 return 1 ;
51 }
52

53 c l i e n t = accept ( sock , NULL, 0 ) ;
54 i f ( c l i e n t < 0) {
55 p r i n t f ( ” accept ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
56 return 1 ;
57 }
58

59 do {
60 FD ZERO(& r f d s ) ;
61 FD SET ( STDIN FILENO , &r f d s ) ;
62 FD SET ( c l i e n t , &r f d s ) ;
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63

64 s e l e c t ( ( ( sock > c l i e n t ) ? sock : c l i e n t ) + 1 , &rfds ,
65 NULL, NULL, NULL) ;
66

67 i f ( FD ISSET ( STDIN FILENO , &r f d s ) ) {
68 i n t len = read ( STDIN FILENO , buf , s i ze of ( buf ) ) ;
69 write ( c l i e n t , buf , len ) ;
70 }
71 i f ( FD ISSET ( c l i e n t , &r f d s ) ) {
72 i n t len = read ( c l i e n t , buf , s i ze of ( buf ) ) ;
73 i f ( ! len ) {
74 puts ( ” Peer c losed connect ion . ” ) ;
75 break ;
76 }
77 p r i n t f ( ”%s ” , buf ) ;
78 }
79

80 } while ( r e t v a l > 0) ;
81

82 return 0 ;
83 }

Listing 9: Minimal Knock server

1 # include <s t d i o . h>
2 # include <unistd . h>
3 # include <errno . h>
4 # include <s t r i n g . h>
5 # include <sys/socket . h>
6 # include <n e t i n e t /in . h>
7 # include <arpa/ i n e t . h>
8

9 # include <sys/ s e l e c t . h>
10

11 # define TCP STEALTH 26
12 # define TCP STEALTH INTEGRITY 27
13 # define SERVER ADDR ” 1 2 7 . 0 . 0 . 1 ”
14

15 i n t main ( i n t argc , char ∗∗argv )
16 {
17 i n t sock , r e t v a l ;
18 s t r u c t sockaddr in addr ;
19 unsigned char buf [ 5 1 2 ] ;
20 f d s e t r f d s ;
21

22 addr . s i n f a m i l y = AF INET ;
23 addr . s i n p o r t = htons ( 8 0 8 0 ) ;
24 i n e t a t o n (SERVER ADDR, &addr . s in addr ) ;
25

26 char s e c r e t [ 6 4 ] = ” This i s my magic ID . ” ;
27 char payload [ 4 ] = ” 1234 ” ;
28

29 sock = socket ( AF INET , SOCK STREAM, IPPROTO TCP ) ;
30 i f ( sock < 0) {
31 p r i n t f ( ” socket ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
32 return 1 ;
33 }
34

35 i f ( se tsockopt ( sock , IPPROTO TCP , TCP STEALTH , s e c r e t , s i ze of ( s e c r e t ) ) ) {
36 p r i n t f ( ” se tsockopt ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
37 return 1 ;
38 }
39 i f ( se tsockopt ( sock , IPPROTO TCP , TCP STEALTH INTEGRITY , payload ,
40 s i ze of ( payload ) ) ) {
41 p r i n t f ( ” se tsockopt ( ) f a i l e d , %s\n” , s t r e r r o r ( errno ) ) ;
42 return 1 ;
43 }
44
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45 i f ( connect ( sock , ( s t r u c t sockaddr ∗ ) &addr , s i ze of ( addr ) ) ) {
46 p r i n t f ( ” connect ( ) f a i l e d %s\n” , s t r e r r o r ( errno ) ) ;
47 return 1 ;
48 }
49

50

51 do {
52 FD ZERO(& r f d s ) ;
53 FD SET ( 0 , &r f d s ) ;
54 FD SET ( sock , &r f d s ) ;
55

56 s e l e c t ( sock + 1 , &rfds , NULL, NULL, NULL) ;
57

58 i f ( FD ISSET ( STDIN FILENO , &r f d s ) ) {
59 i n t len = read ( STDIN FILENO , buf , s i ze of ( buf ) ) ;
60 write ( sock , buf , len ) ;
61 }
62 i f ( FD ISSET ( sock , &r f d s ) ) {
63 i n t len = read ( sock , buf , s i ze of ( buf ) ) ;
64 i f ( ! len ) {
65 puts ( ” Peer c losed connect ion . ” ) ;
66 break ;
67 }
68 p r i n t f ( ”%s ” , buf ) ;
69 }
70

71 } while ( r e t v a l > 0) ;
72

73 return 0 ;
74 }

Listing 10: Minimal Knock client

B The Interface to the Dynamic Linking Loader

In order to enable TCP Stealth for existing applications, several functions of the libc and
the network API need to be wrapped. This is achieved by using the functions provided by
the interface to the dynamic linking loader (ld on traditional Linux systems). The process
is in order to wrap a API function with user defined code is straightforward. Listings 11,
12 and 13 show a minimal example how overriding is done in code followed by a brief
explanation.
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1 # include <s t d i o . h>
2

3 i n t main ( )
4 {
5 puts ( ” Hello world ! ” ) ;
6 return 0 ;
7 }

Listing 11: Source code of the
LD PRELOAD example program

1 $ gcc program . c −o program
2 $ gcc −shared l i b o v e r r i d e . c \
3 −l d l −fPIC \
4 −o l i b o v e r r i d e . so
5 $ ./ program
6 Hello world !
7 $ LD PRELOAD=./ l i b o v e r r i d e . so \
8 ./ program
9 Hello from shared o b j e c t !

10 Hello world !

Listing 12: Sequence of the needed
shell commands used to compile and
run the LD PRELOAD example
program and library

1 # include <s t d i o . h>
2 # define USE GNU
3 # include <dl fcn . h>
4 # include <s t d l i b . h>
5

6 s t a t i c s t r u c t h o o k e d l i b c f u n c t i o n s {
7 i n t (∗ puts ) ( const char ∗ ) ;
8 } hooks = { 0 } ;
9

10 i n t a t t r i b u t e ( ( c o n s t r u c t o r ) ) i n i t h o o k s ( )
11 {
12 const char ∗ e r r ;
13 hooks . puts = dlsym (RTLD NEXT, ” puts ” ) ;
14 e r r = d l e r r o r ( ) ;
15

16 i f ( e r r ) {
17 p r i n t f ( ” Fa i l ed to r e s o l v e ” \
18 ”symbol puts : %s\n” , e r r ) ;
19 e x i t (−1) ;
20 }
21

22 return 0 ;
23 }
24

25 i n t puts ( const char ∗s )
26 {
27 hooks . puts ( ” Hello from shared o b j e c t ! ” ) ;
28 return hooks . puts ( s ) ;
29 }

Listing 13: Source code of the LD PRELOAD example
library

1. The sample program in Listing 11 calls puts from the libc API which should be
overridden with a custom implementation of puts.

2. An overriding library (Listing 13 would call dlsym with option RTLD NEXT and the
name of the function (puts) that should be wrapped (or any symbol residing in a
dynamic library used by the program). It returns a pointer to the location with the
provided symbol name within the original library on success which is stored as the
function pointer hooks.puts in the example.

3. The overriding library provide a function with the identical signature as the function
to be wrapped. (That is, name and arguments need to match the original function
signature.)

4. In the following, the puts function in line 25 provided by the overriding library will
be called each time the targeted program calls puts. The example implementation
of the customized puts simply calls the original puts (hooks.puts) twice, once to
output an extra message and once to output the original message passed to the puts
function by the program.

Listing 12 shows how the program and the overriding library can be compiled. To
document the functionality, the program first is called as generated by the compiler and
afterwards with liboverride.so assigned to the LD PRELOAD environment variable. The
result is the additional message of the overriding library being output above the original
message of the program.

The technique described above used in a similar manner to enable TCP Stealth in
existing code.
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