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Abstract
Obfuscation is widely used to hide sensitive data of software systems in
scenarios where an analyst has full access to a software system. It trans-
forms a program to become harder to understand and reverse engineer
while preserving the semantics of the original program.
Current obfuscation methods try to achieve this by adding complexity
to the control flow. Recently, a new approach to obfuscation has been
proposed working in the exact opposite way: The control flow of a protected
program is linearized, leaving only one continuous stream of machine code
instructions containing the entire program. To further strengthen the code
against analysis, all instructions of the original program are replaced by a
single instruction.
In this Bachelor’s Thesis, I will analyze the functionality of the proposed
techniques and its applicability as an obfuscation method.
The thesis also presents an approach that allows for a complete recovery
of the control flow of the original program utilizing a modified version
of taint analysis in combination with a satisfiable modulo theory (SMT)
solver.
We evaluate both, obfuscation and deobfuscation in context of applicability
to real-world scenarios. We find that the time and space penalty introduced
by this obfuscation method in its current form, add significant overhead
to the program. Finally we evaluate our algorithm on several artificial
programs to recover the original control flow and show that recovery is
possible in most cases.



Abstrakt
Obfuskierung ist eine weit verbreitete Technik um in Szenarios, in de-
nen ein Analyst Zugriff auf ein System hat, sensible Daten zu schützen.
Es transformiert ein Programm in eine neu, schwerer zu analysierende,
Form. Heutige Obfuskierungstechniken versuchen das zu bewirken, in-
dem sie die Komplexität des Kontrollflusses erhöhen. Es wurde eine neue
Technik vorgeschlagen, die genau in die Gegenrichtung arbeitet: Der Kon-
trollfluss wird linearisiert, sodass es nur noch einen Basic Block gibt,
welcher das gesamte Programm beinhaltet. Dies wird in Verbindung mit
der Reduzierung des Maschinenbefehlssatzes auf einen einzigen Befehl be-
werkstelligt. In dieser Bachelorarbeit werde ich die Funktionsweise dieser
Obfuskierungstechnik und ihre Anwendbarkeit untersuchen.
Diese Arbeit präsentiert außerdem eine Herangehensweise die es erlaubt
den originalen Kontrollfluss, unter Zuhilfenahme einer modifizierten Taint-
Analyse, komplett wieder her zu stellen.
Durch Messung der Einbußen in der Programm Größe und seiner
Ausführungszeit bei Nutzung dieser Obfuskierungstechnik, werde ich
zeigen, dass in der aktuellen Form, eine Anwendung kaum praktikabel ist.
Zuletzt werde ich noch die Analysemethoden zur Rückgewinnung des
Kontrollflusses evaluieren und zeigen, das es in den meisten Fällen möglich
ist, diesen zurück zu gewinnen.



1 Introduction

The section motivates our work by relating the concept of control flow linearization to
several applications in the real world, establishes connections to similar work that has
been done on the topic of obfuscation and outlines our contributions.

1.1 Motivation
In some scenarios a party wants to ship a program but does not want to disclose certain
properties of an algorithm it uses. This could be a vendor trying to prevent theft of
intellectual property or a company implementing a cryptographic algorithm denying
people to know which crypto system and what keys have been used. This approach is bad
from a security perspective, because if people manage to reverse engineer such code access
to personal assets, such as chat logs or documentation on company infrastructure could
be illegitimately obtained. This discouraged principle is usually referred to as Security by
obscurity [20].

A special application of obfuscation in this context poses the protection of media
content: In order to maintain the integrity of intellectual property, so-called white box
cryptography is employed. In such a scenario, the defender assumes that the attacker is
the end user of a product being theoretically in possession of all needed knowledge to
recover a secret key and algorithm from a given system. The challenge to the defender is
to provide an implementation that is complex enough that the attacker is deterred from
performing a complete analysis of the system. Since the term white box cryptography was
first introduced by Wyseur et al. [22], implementations of the Data Encryption Standard
as well as the Advanced Encryption Standard such as [3] and [4], among others have been
proposed.

A second party extensively using obfuscation are malware authors. In order to increase
the resources needed for analysis, obfuscation is frequently employed: Increasing complex-
ity in recent malware samples such as Rombertik1 underlines this fact. While traditional
malware has always been obfuscated by increasing the complexity of the inner mechanics
of the malicious payload and thus blowing up the control flow to confuse an analyst,
this work takes a different approach to the topic of obfuscation: Instead of increasing the
complexity of the control flow in a given program, one can also minimize the control flow

1https://blogs.cisco.com/security/talos/rombertik
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1 Introduction 1.2 Related Work

which, in an extreme corner case can degenerate to a linear block without any explicit
control flow changes.

As malware is still a prevalent threat of our times, this thesis examines the strength
and resilience recently proposed implementations [9] of such control flow linearization
algorithms against an attacker and suggests analysis techniques that can be used to counter
this new kind of obfuscation.

1.2 Related Work
The earliest original work mentioning the term obfuscation was written by Collberg et al.
in 1997 [5].

During the last decades, many obfuscation tools emerged. Recent academic obfuscators
include Obfuscator LLVM [15] and Matryoshka [11], theoretical background on obfuscation
techniques can be found in the “Platform Independent Code Obfuscation“ [1].

On the other hand one can find a great variety of software companies selling commer-
cial obfuscators such as VMProtect2, ASPack3 or the now discontinued but still heavily
used Armadillo4.

Even patents proposing methods of software obfuscation exist: [17].
Generally an Obfuscation is the transformation of a program to a program of identical

semantics such that it is more difficult to understand by an analyst. To give an overview
about obfuscation techniques, we will split them into two classes: Data based obfuscation
and Control flow based obfuscation. In Data based obfuscation, techniques are employed
that aim to hide data or values by transforming them in different ways. Control flow
based obfuscations apply a transformation on the control flow changing its appearance to
confuse and distract the analyst.

First I will elaborate some Data based obfuscation techniques:
A popular way to hide data is to encode it. A function is applied to the data at compile

time, changing the appearance of the static content. Before this data can be used, it has to
be decoded. A way to implement this could be to undo compiler optimization, and instead
of saving a number as it is, saving the number as factors, later to be multiplied. Analysis
of these basic encoding schemes is not too difficult, since these expressions evaluate to
constant values. Similar to that are function expecting encoded parameters. Here the
encoding is done at run time rather than at compile time, but the idea is the same. Working
on homomorphic mappings is more sophisticated to do this transformation. By using
homomorphisms encoded data does not have to be decoded before it is manipulated [6].

Array restructuring also is a common technique, here the elements of an array are
scrambled and a second array is introduced that indexes the elements of the original value.
To access data of the array, the index array has to be used as a indirection of the access.

The second class of obfuscation techniques we discuss are control flow based obfusca-
tions.

Instead of transforming the representation of data, they transfer the control flow of the
program. This is done by changing and adding basic blocks and modifying transitions
between them. For example, function in- and outlining is such a transformation. A function
is said to be inlined, when instead of calling the function, the code of the callee is copied
into the caller. This also is a common compiler optimization that can improve the run time

2http://vmpsoft.com/
3http://www.aspack.com/
4http://www.siliconrealms.com/
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performance of the code. The opposite can be done as well, called outlining. Here code
that is part of a function is moved into a new function, which is then called by the original
function [18].

A program can be further obfuscated by introducing pseudo cycles. In this approach,
a loop that is only executed once is added to the program. This will fool static analyzers as
they don’t recognize that loop is only run once, and so they will produce a more complex
control flow graph.

Opaque predicates are another way to make the control flow graph more complex.
The idea behind this is that code is executed under a condition that always evaluates to
either true or false. This adds dead code to the program that is unreachable. Those opaque
predicates are hard to find during static analysis since an arbitrarily complex condition
has to be evaluated.

To hide the control flow the technique called “Control flow flattening“ does not
necessary introduce more basic blocks, but rather hides the connection between them. Like
the name suggests it transforms the control flow to reduce its hight. To do so it introduces
a proxy block, and instead of directly jumping to a different block, the proxy is used as a
trampoline. In a extreme case the control flow can be reduced to two layers, all the original
basic blocks and the proxy block [1].

Most of the techniques transforming the control flow add complexity to it, like control
flow flattening hiding the connection between basic blocks or opaque predicates adding
dead ones. Stephen Dolan showed in his paper Mov is Turing complete [8] a way to build a
Turing machine with only using the MOV instruction of the x86 machine model. Based on
the idea in this paper a new way to transform the control flow has been created. It creates
a branch free program by emulating jumps and linearises the control flow, resulting in
only one basic block containing the entire program. Christopher Domas implemented a
compiler to translate a program into machine code utilizing this obfuscation technique5 [9].

1.3 Contributions
This thesis aims to make the following contributions:

• We provide an in-depth description of the obfuscation methods employed by the
MOVFUSCATOR by Christopher Domas [9].

• We give detailed theoretical background on the topic of recovering the original con-
trol flow graph from a program that had been obfuscated using the MOVFUSCATOR.

• We release the (to our knowledge) first generic deobfuscator for programs that have
been compiled for the GNU/x86 mov target.

• We propose a generic way of recovering the control flow of the original program
from the MOVFUSCATOR machine. (This process is also addressed as a broader topic
referred to as devirtualization [16, 19].)

The remainder of this document is split up into five parts. Section 1 introduces the
theoretical background explaining the original concepts behind the concept of a one-
instruction machine and connecting it to the classical idea of Turing completeness. Section
2 gives a structured explanation of the implementation of two control flow linearization

5https://github.com/xoreaxeaxeax/movfuscator/
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techniques and describe the details on how the MOVFUSCATORB as well as the MOVFUS-
CATORC model achieve semantic preserving obfuscation. Section 4 constitutes the core
of our research and explains a complete generic way to recover the control flow of such
an obfuscated program. We evaluate our proposed algorithm in section 5 on speed and
correctness, showing that in case of the MOVFUSCATORB model the complete source code
of the obfuscated application can be recovered. We conclude in section 6 and give ideas
for future work on the topic.

4



2 Background

This section covers the theoretical background of our work. We briefly introduce the
formal model of Turing machines and WHILE programs and recapitulate the axioms that
are needed to achieve WHILE completeness. These axioms are then applied to show that
the MOV instruction of the x86 architecture is WHILE and therefore Turing complete. We
explain a way of organizing a machine that uses only one instruction that is employed by
the implementation of Stephen Dolan [8].

2.1 Turing Machines
To show that The machines introduced later can compute any computable function i
first want to introduce the model of the Turing machine. It is an abstract machine model
commonly used in computability theory. It is a state machine operating on an infinite band
of cells with each cell holding a symbol. It consists of a head capable of reading from and
writing to the band, and a motor moving the position of the head by one in any direction or
staying over the cell it was. It has been shown that with this simple model all computable
functions can be computed. A function is said to be computable if an algorithm exists that
returns the result of the function if it terminates [14] [12].

2.1.1 Introduction of the Formal Model

I will use a formal notation similar to state machines

M = (Q,Σ,Γ, δ, q0, B, F )

using the following notation:

• Q: The finite set of states qi of the Turing machine

• Σ: The finite set of input symbols

• Γ: The finite set of band symbols, Σ ⊂ Γ

• δ: A partial function δ : Q × X = Q × X × {L,R}, where {L,R} describes the
movement of the head

– L: The head moves one cell to the left

5
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– R: The head moves one cell to the right

• q0: The entry state

• B: The blank symbol, B ∈ Γ, B /∈ Σ (All cells not containing input symbols are
initialized to this symbol.)

• F : The set of accepting states, F ⊆ Q

In the beginning the band of the Turing machine is initialized with the input. All other
cells are set to the blank symbol. The head is placed over the leftmost symbol of the input
and the machine is set to be in state q0.

In each step the machine reads the symbol x from the cell under its head and makes
a transition depending on the current state q, δ(q, x) = (q′, x′, d). If δ is not defined for
given state and symbol the machine halts. In any other case the machine will write symbol
x′ into the cell, replacing x, then move the head according to d and switch to state q′. If
the machine holds in some state qi ∈ F , the input is accepted by this machine, otherwise
(q /∈ F ) it is rejected [14].

2.1.2 Turing Completeness

The concept of Turing completeness is a concept of computability theory. It is said that
a language or set of instructions is Turing complete, if it is possible to emulate a Turing
machine with them. That entails that such language or instruction set can compute any
function a Turing machine can compute.

2.2 WHILE programs
WHILE programs are a part of computability theory. They have been shown to be Turing
complete, thus a language being WHILE complete is Turing complete as well. This is impor-
tant since showing WHILE completeness can be easier than showing Turing completeness.
The language of WHILE programs is a formal language defined as follows:

Algorithm ::= start Statements end
Statements ::= Statement | Statements ‘;‘ Statement
Statement ::= ε | Assignment | Loop
Assignment ::= Variable ‘:=‘ Expression
Expression ::= 0 | Variable | succ Variable | pred Variable
Variable ::= any identifier
Loop ::= while Variable 6= 0 do Statements end

The succ and pred operations are the successor and predecessor operation on the
Natural numbers, so that succ(i) = i+ 1. pred is defined likewise, but pred(0) is defined
to be zero. To allow empty programs, ε is the empty statement. The input for these
WHILE programs is expected to be already read in and saved to input states and output is
generated in output states. So the input is part of the starting state and the output is a part
of the terminal state of the program. This semantic is called an offline algorithm, since
during it’s execution no interaction with the environment is performed. Only countable
many Variables are allowed but any identifier may be chosen. A statement can be an
assignment, multiple statements in series, the empty statement or a WHILE loop. The
while loop is defined to repeatedly execute the statements in the body of the loop, as long
as a Varaible is not equal to zero. If this Variable is zero when the loop condition is first
met, the loop body is not executed. [12]

6
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a0 0 a1 0 ... an−1 0 0 1

Figure 1: Grouping multiple cells to extend the set of symbols

2.3 Brainfuck
The first version of the MOVFUSCATOR was written to compile any code written in the
Brainfuck language to only MOV instructions. One reason to use Brainfuck as a base
language is that it features a small set of operations which are not to hard to implement,
also it is close to the syntactic of WHILE programs. Here I will give a short introduction to
the language Brainfuck and explain why it is WHILE complete. First Brainfuck works on an
infinite array of memory cells, each holding a Byte. These memory cells can be used to
hold the variables of the WHILE program. It has one register R holding an index into the
array of cells and only 8 instructions:

• + increments the value of the cell pointed to by R

• − decrements the value of the cell pointed to by R

• > increments the pointer R.

• < decrements the pointer R.

• [ jumps forward to the matching ] if [R] 6= 0

• ] jumps backwards to the matching [ if [R] 6= 0

• . writes the Byte pointed to by R to the output

• , reads one Byte of input into the cell pointed to by R

Without the size limitation the similarities between a WHILE and a Brainfuck program
are easy to see. The cells hold unsigned integer values and the while loop directly corre-
sponds to ‘[‘ and ‘]‘. Assignment can be done by first moving to the target cell, clearing it
and then using a loop to copy over the value, constantly running between the cells. With
the memory of each cell being limited, + and − behave different in a sense that they over-
or underflow, meaning that the successor of the highest value is the lowest and vice versa.
This limitation can be overcome by grouping consecutive cells to represent a wider range
of symbols, as seen in figure 1. After each of the cells holding values a zero cell is inserted
and the group is terminated by two cells holding the values zero and one.

The cells ai hold the value of the group in little endian notation. If the group consists
of two cells and a0 holds 0x37 and a1 holds 0x13 the the value of the group would be
0x1337. The basic idea behind the group and all following operations is to work on the
cells an, until a condition is met, like a successfull incrementation without overflow, then
work is continued on the zeros. It is made sure that after the execution zells defined to
hold zero still hold zero. In the end the pointer will be forced to point to a predictable
location, so that the state is always certain after the operation. To comply to the definition
of WHILE programs form Subsection 2.2, we need to show that a group of cells can be
decremented without underflowing. The following operations can all be split into three
basic components. The first does the desired operation on the group, leaving R to point
to either of the terminating cells. The second one forces R to point the first of there two

7
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1 [<]

Figure 2: forcing R to point to a distinct cell

1 [−(<< −)i(>>)i >] >>

Figure 3: The predecessor operation

cells, and the third part goes back to a0. First i will show the implementation of the last
two components, since they are used by all the operations.

We force R to point to the first terminal cell, by using the code from Listing 2. At the
beginning R points to either of the terminal cells of a group. If it points to zero, this code
will be skiped and R will not change. If it points to the last cell, holding one the loop will
be executed exactly once. It will shift R to point to the first of the terminal cells. This cell
holds zero and so execution of the loop stops. Either way R points to the first terminal cell
now.

The other component simply walks back the pointer R to the start of the group. This is
done by consecutive < instructions.

Now i will show how the predeccessor, successor and the comparison with zero can
be done using these groups. To calculate the predecessor, without underflowing we write
for any ai in the group the code from Listing 3 in sequence.

Let us assume that R does not point to a cell ai but rather to one of the zero zells in
between. By definition the loop will not be executed and R will be advanced by two, and
either point to another zero, or the terminal one. If R points to ai twp cases can occure.
In the first one, the cell is zero, so that the loop is not executed. R will then point to ai+1.
In the second case ai is greater than zero and is then decreased by one. If this happen all
aj , j < i are decremented as well. They could not be decremented earlier, so they must
hold the value zero and will underflow. In the end R will be adjusted to point right behind
ai, so that no further decrementations can occure.

The counter part to the predecessor operation is the successor operation. The challange
here is that an overflow can only be detected after incrementing the value. So instead of In
case R points to a cell after ai its value is zero by definition, therefore R will be advanced
by two, either pointing directly after ai+1 or to the second trailing zero. In the other case
R points to ai. If the value of ai equals zero R is advanced to point to ai+1 or the first of
the trailing zeros. If ai is not equal zero, all cells ai, ai−1, ..., a0 are decremented by one.
Since ai−1..a0 hold zero the decrement of Brainfuck will underflow, assigning the largest
possible value they can hold to them.

Incrementing a group is slightly more complex since [ tests for zero, so after detecting
that no overflow has occurred further increments have to be negated. The code in Listing 4
shows how this can be done. First it increments an ai and if + does not overflow it will
set all zero fields after aj with i > j to the highest value, so that the addition by one will
overflow and yield zero, to prevent the code inside the loop to be executed again. R will

1 +[> (>> −)n−i−1(<<)n−i−1] >>

Figure 4: successor operation

8
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1 [<x+2i + >x+2i>] >>

Figure 5: check if a group is not zero

now point to the cells in between the a or the final one. If it does overflow the result in ai
will be zero and the loop will not be executed, R is set to point to ai+1 or the last zero. To
be able to loop, we must be able to check whether a group equals zero or not. To do this I
need one extra cell e. This can be located anywhere but I will assume that it lies at a lower
address. x is the difference in address between e and a0. For example if the cell is directly
below a0, then x = 1.

To check if the calue of the group is zero, the code from Listing 5 can be used. For a
group to be equal to zero every member ai of this group has to be zero. The check works
very similar to the predecessor operation but when it encouters a value different from
zero, one will be written to e. The R is set to point to cells in between of cells holding
values.

e can now be used as the result of the check in the WHILE loop. It has to be manually
computed at the end of the loop again. The last operation needed to achieve WHILE
completness is the assignment. Here all ai of the target have to be cleared using [−] first
and then all values ai can be copied over one at a time. The assignment in conjunction
with the predecessor operation can be done by first assiging one variable to the other and
then using the successor or predecessor operation on the target.

Now that I have shown that any cell size can be emulated using Brainfuck, and that a
behaviour that prevents an underflow from happening can be enforced, i have shown that
Brainfuck is WHILE and thereby Turing complete.

2.4 The MOV instruction on x86
Before showing that the MOV instruction is Turing complete I will first give an overview
about what the MOV instruction is, and what it does.

The MOV instruction is part of the x86 instruction set. It is one of the most used
instructions as it copies data between machine registers and memory. It supports a few
different addressing modes to address memory, making the mov instruction a very versa-
tile instruction. The modes to address memory can be generally split into three ways. First
in the direct addressing mode, the address of the memory cell is stored as an immediate
value behind the operation, so that the address is hard-coded into the instruction. The
second way is called “register indirect“. Here the target address is supplied by a register.
Which register will supply the target information is encoded into the instruction. The last
addressing mode calculates the address from two registers and an immediate value. The
address is calculated using the formula, base + index ∗ n+ offset, n ∈ {1, 2, 4, 8}. Base and
index are registers, encoded in the instruction and the offset is an immediate following the
instruction, n is usually refereed to as scale. This addressing mode is commonly used to
access an array, as the index and scale allow easy addressing of individual elements. Only
one operand, either source or target, of a given MOV instruction can target a memory
location. The other operand has to be a register, for the source operand an immediate value
is allowed as well. In following listings I will omit these restrictions in favor of readability.
When an instruction in a later listing targets memory twice, a intermediate step has to be
added, first copying the value to an internal register.
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R1 R2 . . . Rn N

Figure 6: The list of Symbols

1 mov [Ri ] , 0
2 mov [Rj ] , 1
3 mov Rk , [Ri ]

1 Rk = (Ri == Rj )

Figure 7: equality check

Stephen Dolan has shown the Turing completeness of the MOV instruction by in-
troducing a machine model and then using this model to simulate a Turing machine.
Christopher Domas provides an implementation of Dolan’s model, making it the (to our
knowledge) first public one-instruction compiler that we base our research on.

2.4.1 Machine Specification

To show while completeness of the MOV instruction I will first define a machine model,
that can be emulated by a x86 machine. In this section I now describe the architecture of
the Turing machine that uses only the MOV instruction of the x86 platform as introduced
by Stephen Dolan.

Memory is organized in 32bit wide cells (in the following we refer to this as machine
words or simply words. Each of these cells can either hold an offset or a memory address.
The offset is limited to values in the set 0, 1, and both, 0 and 1 must not be valid addresses.
The machine also uses a set of registers R1, ...Rn all holding exactly one machine word.
The machine only uses the x86 MOV instruction described earlier. The machine does not
use accepting or rejecting states, however this does not reduce the power since it can be
built to write ’accept’ or ’reject’ to the band.

The model also comprises lists that can be considered lisp like, as seen in Figure 6: A
non-empty list consists of a cell of two words, the first word represents the first element
of the list, the second word pointing to the rest of the list, defined likewise. The empty
list is represented by a cell at a specified address N . The content of N is undefined. Based
on the described list implementation, the band, states and transition tables are defined
to be an infinite lists. The Symbols are represented by cells at addresses S1, ..., S|Γ|, each
corresponding to their respective symbol in Γ. Without loss of generality it is assumed
that the blank symbol corresponds to S1. Its content is unspecified.

2.4.2 Proof of Turing Completeness

To show Turing completeness we either have to show a way to emulate the Turing
machine, or to emulate a language that is know to be Turing complete. I will show
Turing completeness by giving a generic way to emulate any WHILE program. For
this we need need several components, like while loops, assignments, the successor and
predecessor operation. First need a primitive for equality checking. This is necessary for
Turing completeness because it later allows the code to have effect only under certain
conditions. To check whether two pointers Ri, Rj point to the same symbol the series of
instructions from Figure 7 can be used.

10
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1 mov [N ] , Ri

2 mov [N + 1 ] , Rj

3 mov Rl , [N + Rk ]

2 i f (Rk )
3 Rl = Rj

4 e lse
5 Rl = Ri

Figure 8: switching between data

The basic idea behind this is to write values to the symbols and if both registers address
the same symbol, the value written the second time will be read. This check is done in
three steps. First zero is written to the address Ri points to, then one is written to the
address Rj points to. Afterwards the register Rk is assigned the value of the cell Ri points
to. If Ri equals Rj then the 0 that is written earlier will be overwritten by the 1 and thus
the result in Rk will be one. If they are not equal then Ri and Rj point to different memory
cells and [Ri] will not be overwritten, resulting in a zero in Rk. This changes the content of
the symbols that are addressed, but since the value of the symbol is defined by its address,
and its content is unspecified, this has no effect later. No that we can check if two values
are equal, we can now also switch between two sets of data. We use N , the termination of
any list to temporary hold the two values. Since the contents of N are unspecified as well,
those changes in the content have no effect later.

In Figure 8 we can see the instructions used to achieve switching between data. Here
Ri and Rj are arbitrary data and Rk is an offset (either zero or one) which may stem from
the result of an equality check. The result will be stored in Rl which, depending on the
value of Rk will either be the original contents of register Ri or Rj [8].

To show WHILE completeness we now adjust the definitions made earlier a little, to
allow the increment and decrement operations needed. Currently it is not possible to
decrement or increment a symbol as the exist only as specified memory locations. I now
define the symbols to be a double linked list, where the backward links of the first element
points to it self. The pointer to the next element is stored right behind the content of Si
and the backwards pointer thereafter.

The empty statement of the while program is replaced by no instruction in our machine.
The symbols are the Natural numbers, and are ordered so that Si = i− 1, as counting of
the symbols starts at one. The fundamental problem any approach that aims to implement
a Turing complete machine is that the MOV instruction is not capable of branching, as
it can not target the instruction pointer. I will show a technique to emulate these jumps,
using a loop around the whole program. Looping can be done by using the segmentation
fault signal handler or page aliasing depending on what level the program operates. This
entails, that for every run of the loop, every instruction inside it will be executed. To
mitigate this problem, we will assign a unique label to every basic block. In the beginning
the first basic block is marked for execution by writing it’s label to the register R1. Every
the machine state is potentially changed, a check is introduced, to see if the instruction is
part of the basic block marked by R1. Only if this check passes, the change is applied to
the state of the machine. Jumps are performed by updating the label in R1, what als may
only occur when the current block is the block marked by R1.

We will also use R2 and R3 to hold temporary values, these to registers are excluded
from the machines state, as well as the contents of the Symbols and the content of N are
not part of the state.

Ri accesses the contents of the register Ri, [Ri] accesses the content the register points
to, and &Ri is the address of the register in memory. Addressing a register like that is

11
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1 mov [D ] , 0
2 mov [R1 ] , 1
3 mov R2 , [D ]
4 mov [N ] , N
5 mov [N + 1 ] , &Ri

6 mov R2 , [N + R2 ]
7 mov [R2 ] , Rj

6 i f (D == R1 )
7 Ri = Rj

Figure 9: Assignment

1 mov [D ] , 0
2 mov [R1 ] , 1
3 mov R2 , [D ]
4 mov [N ] , N
5 mov [N + 1 ] , &Ri

6 mov R2 , [N + R2 ]
7 mov R3 , [Rj + n ]
8 mov [R2 ] , R3

8 i f (D == R1 )
9 Ri = succ (Rj ) ; / / i f n = 1 ,

e l s e p r ed (Rj )

Figure 10: Incrementing / Decrementing Data

possible, because they are defined to be a list, so they lie in memory. From now on we will
use D as the identifier of the current basic block. It is a pointer to a constant Sn.

With this we now can implement a way to assign one register to another, see Figure 9.
We first check if the basic block is the one marked by R1 for execution and then switch
between the target register and N , if the current block is the marked one, then Rj will be
written to Ri. If not, it will be written to N , and have no effect on the machine status.

Now we build the succ and pred statement. The concept seen in Figure 10 is very
similar to the concept we used defining our assignment. Here n is either one or two,
depending on what link direction should be accessed. If n = 1, then target of the forward
list is copied, so that Ri points to the successor afterwards. If n = 2, target address of the
backwards link is copied, effectively executing the pred operation.

To implementation of the while loop has to be split into two parts. The first part opens
the loop and handles the check of the variable. The second part closes the loop behind
its loop body and always jumps back to the first, where the loop condition will then be
checked. The opening of the loop is implemented, as seen in Figure 11. After making sure
the current block is the one marked for execution, The value of Ri is checked. If it equals

1 mov [D ] , 0
2 mov [R1 ] , 1
3 mov R2 , [D ]
4 mov [N ] , N
5 mov [N + 1 ] , &R1

6 mov R2 , [N + R2 ]
7 mov [S1 ] , 0
8 mov [Ri ] , 1
9 mov R3 , [Si ]

10 mov [N ] , Ri

11 mov [N + 1 ] , Sj

12 mov R3 , [N + R3 ]
13 mov [R2 ] , R3

10 i f (D == R1 ) {
11 i f (Ri != S1 )
12 Ri = Ri ;
13 e lse
14 Ri = Sj ;
15 }

Figure 11: opening of a while loop
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1 mov [D ] , 0
2 mov [R1 ] , 1
3 mov R2 , [D ]
4 mov [N ] , N
5 mov [N + 1 ] , &R1

6 mov R2 , [N + R2 ]
7 mov [R2 ] , Sj

16 i f (D == R1 )
17 R1 = Sj ;

Figure 12: jump to label Sj

1 mov [D ] , 0
2 mov [R1 ] , 1
3 mov R2 , [D ]
4 mov [N ] , N
5 mov [N + 1 ] , 0
6 mov R2 , [N + R2 ]
7 mov [R2 ] , 0

18 i f (D == R1 )
19 h a l t ;

Figure 13: Assignment

zero, then R1 is updated to the label of the basic block following the while loop. If it does
not equal zero, Ri is preserved and the loop body is executed. Now we need to find a way
to transfer the control at the end of a basic block to its successor. The is done much like a
normal assignment, but instead of copying the value from a different variable, a constant
symbol is assigned, see Figure 12. In the case a loop is closed, this symbol is equivalent to
the id of the opening block, else the next consecutive block is targeted. To finally end the
while program we use a mechanic build into the computer. Accessing a page that is not
mapped results in a segmentation fault. A signal is sent to the program and if no handler
is registered to catch such signal the program is terminated. To trigger this segmentation
fault we first add a basic block at the end of the while program. then we try to access the
memory address zero if the current block is the one marked by R1. The virtual address
zero is normally not mapped to any physical address, and on the Linux operating system
a user land program can not map this virtual address.

Now that we have found an implementation for every terminal of the WHILE language,
our implementation is WHILE and therefore Turing complete.

2.5 SMT Solvers
Satisfiability Modulo Theories (SMT) solvers check the satisfiability of formulas written
in a language containing interpreted predicates and functions. In their implementation
they can be seen as extensions of propositional satisfiability (SAT) solvers to more expres-
sive languages. They are used to lift the efficiency of SAT solvers to richer logic. Very
schematically, an SMT solver abstracts its input to propositional logic by replacing every
atom with a new proposition. Underlying, a SAT solver is used to provide Boolean models
for this abstraction. The theory reasoner repeatedly refutes these models and refines the
abstraction by adding new clauses, until either the theory reasoner agrees with the model
found by the SAT solver, or the abstraction is refined to an unsatisfiable formula. [2]
An established implementation of such an SMT solver is z36, developed by Microsoft
Research. [10]

6https://github.com/Z3Prover/z3/wiki
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2 Background 2.6 Taint Analysis

Our approach for deobfuscation leverages the built-in constraint-solving techniques
of z3 in order to determine possible jump targets of any given basic block, as we will see
later.

2.6 Taint Analysis
The taint analysis is a very popular dynamic information flow analysis method. It can
be used in several contexts like testing, debugging, policy enforcement and vulnerability
detection. Taint analysis is performed by marking data associated to a memory location.
This data is then tracked as it propagates through the program. A taint analysis typically
has three characteristics:

• taint sources: specify the data to be traced

• taint propagation policy: specifies how taint is propagated during program operation

• taint sanitizers: indicates when data can be unmarked and taint can be removed

In context of vulnerability detection a taint source could be untrusted user input or
network traffic. Propagation of this taint can occur via a covert channel, like the control
flow. If tainted input reaches functions that don’t properly check the tainted values against
internal assumptions, a vulnerability is detected. Taint sanitizing happens when a static
value is assigned to a tainted variable, effectively removing the taint. [21]

In context of deobfuscation I use the taint analysis a bit differently. I use it statically
in a small context. I only obtain how the data is propagated through the program locally.
Application of taint analysis is straight forward in a MOVFUSCATORC obfuscated binary.
No jumps happen and MOV instructions modify data in an explicit way. I use the function
principle also to scan the binary backwards to find the source of a value. Performing a
backwards trace the source of the taint is a given instruction or memory location. The
analysis iterates backwards over an buffer of previously disassembled instructions. If a
MOV into a tainted register or memory location occurs the taint of this register is sanitized
and the source is tainted, if it is not a constant or a memory location known to be a variable.
Temporary storage locations are still tainted. When doing such backwards taint analysis
the result will be a binary tree of memory access in a MOVFUSCATORC executable. This
is due to the fact that the source operand of a MOV operation can only be affected by
two register. Such accesses are recorded. Tainting forwards the taint source is the same
as tainting backwards but propagation is restricted to copies into register only. When a
not tainted value is assigned to a tainted register, taint is removed. This finds all memory
locations the value is written to or when the value is used as an address.

14



1 mov [C ] , 0
2 mov [C + Ri ] , 1
3 mov Rk , [C ]

20 Rk = (Ri == 0) ;

Figure 14: check if Ri equals zero

3 Obfuscation

The MOVFUSCATOR comes in two different flavours: The MOVFUSCATORB version that
accepts a program written in BrainFuck and transforms it to MOV instructions. We suffix
this flavour with a B, standing for Brainfuck. As Brainfuck code is not easily written,
Domas created a second version of the single instruction set compiler: MOVFUSCATORC
serves as a back end for the lcc retargetable ANSI C compiler 7 [13] allowing the full C
standard being flawlessly compileable to MOV instructions.

3.1 MOVFUSCATORB
MOVFUSCATORB is a simple implementation based on the concepts of the original paper
by Dolan and the ideas I showed in Section 2.4.2. It accepts a given program written in
the Brainfuck language and returns assembler code consisting of only MOV instructions.
Since Brainfuck is Turing complete any computable function can be computed. The main
difference in implementation to the Machine defined in Section 2.4.1 is the use of arrays
instead of lists. Symbols are now represented as positive natural numbers including zero.
With the symbols not being memory locations any more, we can not write to them, so we
need a different way to check if a symbol is zero or not. For this comparison 256 bytes of
memory are reserved at address C. One Byte for each value.

The implementation, seen in Figure 14 is very similar to the comparison we saw earlier.
All addresses [C, .., C + 255] are included in the memory range reserved for C and since
every cell can only hold a value v ∈ [0, .., 255], the instruction mov [C + r], 1 always stays
within the bounds of the array. The second thing we loose by defining the symbols to be
integers, is the easy way to traverse the list of symbols get the successor and predecessor.
For this operation we introduce read only lookup tables, one to increment numbers (I)

7https://sites.google.com/site/lccretargetablecompiler/
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and one to decrement values (D), both with a range from 0 to 255.

Ii =

{
i+ 1 ifi ∈ [0, ..., 254]

0 else

Di =

{
i− 1 ifi ∈ [1, ..., 255]

255 else

Both operations wrap around 0. To calculate the increment or decrement of i, the array is
accessed at index i. By the way those arrays are designed the returned value will be one
larger or smaller than i or under or overflow.

The register R1 from subsection 2.4.1 is named id here and implemented as a cell in
memory. We also introduce the variable ON for convenience. It is set to 4 if the current
block should take effect and to zero otherwise. The value four has been chosen to switch
between two sets of data. Brainfuck operates on an array in memory and to have the
program not change the state if a condition is false a second array is introduced. If ON is
zero, this second array is accessed instead. Changes to this second array are discarded,
as only the first array contains the real values that the program operates on. ON reduces
the overhead from the redundant checks whether an operation can write to memory or
not. Different from subsection 2.4.1 is that the basic block before and after a while loop
share the same id. This is no problem here since MOVFUSCATORB has full control over
the translation process and a jumps skipping loops are always forward jumps. This is
based on the way Brainfuck is written, namely as a sequence of instructions that will be
executed in that sequence. Only ] allows to jump back. But since the loop end shares the
label with the loop beginning it does not need to update the label in this case. Execution
will continue with ON being off, until the end is reached and the program loops from
the beginning, hitting the opening [ first. Therefore execution is continued at the right
place. To escape from the loop zero is dereferenced leading to a segmentation fault and
effectively stopping the program.

3.2 MOVFUSCATORC
Christopher P. Domas implemented the so called ”M/o/Vfuscator2”. It is a C compiler
capable of translating any C program into an executable binary for the x86 architecture
that only uses MOV instructions. We relate his implementation to the theoretical model
introduced earlier and point out similarities and differences.

In a first step an intermediate virtual machine is defined that is closely related to x86,
but with less instructions. He then translates the intermediate instructions of the machine
into only MOV instructions. He also wrote a library to extend the basic functionality
of this machine to be able to handle IEEE floating point operations. As the IEEE model
introduces a significant amount of overhead they are not always linked into the binary.

3.2.1 Overview

To make this possible he created a new back end for lcc, the x86/mov target. This target
introduces a virtual machine as an intermediate step and then implements this machine
with only mov instructions.

The machine consists of 11 registers:
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operation c style syntax description

add x, y, z x = y + z addition
sub x, y, z x = y − z subtraction
band x, y, z x = y & z bit wise and
bor x, y, z x = y|z bit wise or
bxor x, y, z x = yˆz bit wise exclusive or
bcom x, y x = y bit wise inversion
neg x, y x = −y negation
lshu x, y, z x = y <<unsigned z unsigned left shift
rshu x, y, z x = y >>unsigned z unsigned right shift
rshi x, y, z x = y >>signed z signed right shift
mul x, y, z x = y ∗ z multiplication
idiv x, y, z x = y/z integer division
udiv x, y, z x = y/unsignedz unsigned division
imod x, y, z x = y%z integer modulo
umod x, y, z x = y%z unsigned modul
cmp x, y x− y compares x and y
eq x, y, z x = y == z x is 1 if y = z else x = 0
not x, y x = ¬y x is not y
jmp cc l, x, y - jump to label l if condtion is met
jmp l goto l always jump to label l

Table 1: supported operations of the mov-machine

• 4 Byte accessible 32 Bit general purpose integer registers

• 2 single precision floating point registers

• 2 double precision floating point registers

• 1 stack pointer pointing at the topmost element of the stack (full ascending stack)

• 1 instruction pointer indicating the label of the next-to-be executed basic block

• 1 status register containing the results of performed comparisons (as per Table 2).

It utilizes an arithmetical logical unit (ALU) capable of basic integer arithmetic and
Boolean logic as depicted in table 1. Additionally there are 3 scratch registers that are used
internally by the ALU.

The only instruction manipulating the status register is the cmp instruction, see table 2.
Contidional and unconditional jumps are supported as well, see tables 1 and 3. Calls are
performed by first pushing the label of the basic block behind the call instruction onto the
stack and then jumping unconditionally. Likewise the implementation of “return“ pops a
label first and then jumps to it.

It is easy to see how this architecture can implement any WHILE program defined
earlier. The registers can be emulated by memory cells. The MOV instruction itself is an
assignment and constants can be represented as they are. It has addition and subtraction,
also accepting an constant as one y or z. A while loop can be emulated by putting a
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short name

zf zero flag
sf signed flag
cf carry flag
of overflow

Table 2: the flags of the status register

condition code condition (x, y)

eqi, equ x = y
gei, geu x ≥ y
gti, gtu x > y
lei, leu x ≤ y
lti, ltu x < y
nei, neu x 6= y

Table 3: conditon codes for the jmp cc instruc-
tion, postfix u and i destinglish between signed
and unsigned

compare x = 0 and a jmp eq afterwards with the destination right behind the loop. Also
at the end of the loop a jump instruction to the beginning is needed to construct a while
loop.

The possible conditions for the jmp cc operations are much like the ones known from
the x86 architecture.

This immediate machine now has to be implemented to run on a x86 computer. This
can be done with only x86 mov instructions. The main problem again is that the jump has
to be emulated since the MOV instruction is not capable of copying data to or from the
instruction pointer (a circumstance that has changed on the x86-64 platform). The same
technique as described in subsection 2.4.1 is employed: Each basic block gets assigned a
different label block. Special locations such as the return points of function calls (that is, in
the usual case the block following the call instruction) also need to be assigned labels.

The designated jump target register referencing the label of the next executing basic
block is called target. As mentioned earlier there is a designated register to show whether
changes should take place or be discarded. We call this ON and possible values for it are
either 0, representing “false“ or “off“ and 1, “true“ or “on“. Most operations writing to
memory now simply check if ON is set to 1. For this there is a the sel data helper. It consist
of 2 adjacent cells both capable of holding addresses. The first cell has a fixed address
pointing to a designated discard cell. Writing to this cell has no impact on the machine by
definition. The second value can be set to an arbitrary address. For writing the jump target
and to ON itself two specializations of this helper exist. The second cell of sel target points
to target, and the second cell of sel on points to ON This allows writing c to address A in
four steps.

1 mov [ s e l d a t a + 4 ] , A
2 mov r , [ON]
3 mov r , [ s e l d a t a + r ∗4]
4 mov [ r ] , c

Listing 1: ”copying c to A”

The next difference is the way the arithmetic is implemented. This is much like MOV-
FUSCATORB, just that it has a lookup table for every operation. The machine internally
works with 32 Bit wide registers. As the address space on the x86 platform is limited
to 232 different addresses, there is not enough space to build look up tables for all 32bit
operations. Even if each value was mapped to only one result, the corresponding look
up table would occupy the whole address space. (One would need 232 ∗ (32/8) Bytes of
memory for all operations, way more than the amount of memory addressable with 32bit
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A
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B

B0 B1

ADD

ADD

ADD
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S0 S1 carryout
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Figure 15: Information flow during addition of two 16 bit numbers A and B with the result stored in S

wide addresses.)
To overcome this limitation, look up tables are for the most part 8bit operations,

deriving the correct result of the 32bit operation using multiple look ups and carries. One
exception to this is the addition which uses a 16 bit look up table so the operation has to
only be split in two parts: Adding the lower halfs, and adding the upper halfs together
with the carry from the lower half.

3.2.2 Static Content

Since all arithmetic operations are carried out using look up tables the generated executable
files contain lots of static data significantly increasing the file size (see Section 5). Based on
the provided mathematical functionality those tables vary in size. They can be divided
in two different groups depending of the arity of the operator: Tables for operations with
only one operand as input and tables for operations with two input operands. Apart from
these look up tables, there also exists static setup code in every MOV program that is
responsible for setting up the execution environment.

Look Up Tables One dimensional look up tables δ are the key data structure being used
for operations of arity one. Basically all results of such an operation are written as an one
dimensional array such that

ei = δ(i) .

There exist three classes of look up tables: Apart from the mentioned one-dimensional
tables (Table 4) there exist also two-dimensional tables (Table 5, explanation see below)
and eight special tables:

Four of the latter ones help with multiplication and the other four help with division.
They are mostly specializations of two dimensional lookup tables. The advantage here
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label size description

alu bn 256 Long words 8 tables each selecting the n’th bit
alu inv8 256 Bytes inverts every bit
alu inv16 65536 Long words inverting 16 Bit at once
alu clamp32 512 Long words return 32 if the operand is greater than 32
alu sex8 512 Long words sign extends a value
pushpop stack size stack pointer adjustment

Table 4: One Dimensional lookup tables

is the need for less instructions to compute the result gaining a performance increase. To
invert the 16 Bit value a one simply accesses the special table alu inv16 at index a:

1 mov r , [ alu inv16 + a ∗ 2 ]

Look Up Tables 2D Adding the two 16 bit values a and b can be done by fist getting the
address of a table specific to the operation and one operand and then accessing index b in
this table:

2 mov r , [ alu add16 + a ∗ 4 ]
3 mov r , [r + b ∗ 4 ]

Addresses are 32 bit wide, so a is multiplied by 4 in the first instruction. As the result
is also 4 byte wide, a potential overflow has to be mitigated by also multiplying b by 4 in
the second instruction.

A noteworthy table is the one being used for addition: Even though addition is an
operation with two operands it is implemented using only one dimensional look up tables.
One table holds all possible results where every cell contains its index i as value at location
ei with i ∈ [0, . . . , 217]:

ei = i

The second table provides pointers into the first table

bi = &ei

realizing the addition of two 16 bit numbers a and b by a double dereference accessing
bi at position a and the result at position b. This primitive for 16 bit addition can be applied
according to Figure 15 to provide a full 32-bit wide addition.

The last look up table is a very important and very big one. It is used to increase or
decrease the stack pointer by four and contains all possible addresses the stack pointer
can attain. It is placed at a fixed offset relative to the stack of the virtual machine. Because
of this restriction the stack pointer is adjusted during the prologue: As this look up table
consists of all possible stack addresses it is quiet large and also imposes a limit on how
big the stack can get. This table is not exactly necessary since its functionality can be done
via a subtract. It just reduces the instruction count needed to perform the push and pop
operation and therefore aims to improve the performance of obfuscated programs.

An example of a push instruction can look like the following:
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label size description

and 2 ∗ 2 entries boolean and
or 2 ∗ 2 entries boolean or
xor 2 ∗ 2 entries boolean exclusive or
xnor 2 ∗ 2 entries boolean equality
alu b s 8 ∗ 256 entries sets the xth bit in y
alu b c 8 ∗ 256 entries clears the xth bit in y
alu eq 256 ∗ 256 entries x == y
alu band8 256 ∗ 256 entries logical and
alu bor8 256 ∗ 256 entries logical or
alu bxor8 256 ∗ 256 entries logical exclusive or
alu lshu8 33 ∗ 256 entries unsigned left shift
alu rshu8 33 ∗ 256 entries unsigned right shift
alu rshi8 33 ∗ 256 entries sign bits for right shift
alu mull 256 ∗ 256 entries low byte of multiplication
alu mulh 256 ∗ 256 entries high byte of multiplication

Table 5: Two Dimensional lookup tables

4 mov r , [ sp ]
5 mov r , [ pushpop−stack−4+r ]

with pushpop being the base address of the look up table and stack being the initial
value of the stack pointer.

Prologue The prologue sets up the execution environment of the virtual machine. It
adjusts the position of the stack, and registers a signal handler for the segmentation fault
and the illegal instructions signals.

A common cause of receiving the segmentation fault is accessing a memory region
in an illegal way. For example trying to access memory that is not mapped, or trying to
execute memory that is marked read and write only.

An illegal instruction signal is received when the program tries to execute an instruction
that is not viable on the chip. In context of the MOVFUSCATORC, the illegal instruction
signal is abused to re-start the execution of the program by setting the address of the
signal handler to the MOV program itself. As signal handlers can be nested, this technique
fulfills one important property that, while handling a signal the cause of the signal may
occur again and the handling function will be called again.

The segmentation fault signal handler is used to dispatch calls into external libraries,
like the libc. After registration of the signal handler the main loop begins. The prologue
adds some code to it. It adds static code that adjusts the stack pointer and pushed the
arguments of the main function onto it. Then it calls the main function and finally calls the
libc function exit.

Apart from the look up tables there are several data structures being set up during
the prologue: To first start execution, toggle execution is initialized to 1. This value is then
written to ON and toggle execution is set to zero. This prevents the adjustment of the stack
and calling the main function to execute again. The data setup also contains the registers,
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initialized to zero. And the stack pointer pointing to the new top of the stack.

3.2.3 Performance Estimation

Due to the way the jumps are emulated the performance of the program takes a big hit.
For every iteration of a for loop the complete program will be executed. Therefore This
performance penalty increases with the size of the program. While to difference is not
severe in the test cases where the code size is very small the difference becomes obvious.
The performance hit is even worse for programs obfuscated with MOVFUSCATORB, since
Brainfuck relies on a lot of nested loops. We will perform a proper performance evaluation
in the evaluation chapter of this thesis.

Control Flow Graph Linearization Emulating jump instructions labeling each basic
block and return target generates a huge overhead in terms of number of instructions. But
it also eliminates traditional jump instructions. The program will be executed linearly and
every instruction will be executed exactly once per run of the loop. In the end an illegal
instruction will create a call to its handler and the execution of the program starts from the
beginning with a different state of the registers. This property of the program linearizes
the program flow and gets rid of all the branches. The whole program appears to be one
giant basic block that covers the semantics of the original program. This property is also
the most desired one from the obfuscating defender’s perspective.

Instruction Set Reduction The x86 architecture has a lot of instructions to perform all
sorts of operations. Among the most common ones are instructions to perform addition,
subtraction and multiplication. By the instruction set reduction none of those instructions
is present in the code anymore. MOVFUSCATORC uses look up tables to perform arithmetic
and logical operations. But due to size limitations most operations on 32 Bit values have
to be split into multiple parts. Each part computes the result of one or two bytes and the
result has to be assembled afterwards. This accounts for another massive overhead in
terms of the size of the obfuscated program.

Virtualization based Obfuscation Traditional virtualization based obfuscators embed
an interpreter into an executable and transform the protected payload into a semantically
equivalent byte-code representation that is executed by the interpreter at run-time. Classic
obfuscators of such kind leverage the usual fetch-execute-writeback loop any CPU has to
undergo which can be detected during the execution. The MOVFUSCATORC represents
another instance of the kind of obfuscation, with the difference that the mentioned loop of
the embedded interpreter CPU is not explicit anymore and therefore difficult to detect.

Additional Hardening Together with MOVFUSCATORC there come some python scripts
that can post process the assembly output of the compiler. These scripts can harden
the generated code against pattern-matching based deobfuscation attacks by using two
techniques: instruction reordering and register renaming.

Both techniques are possible because for the MOV instruction the 4 basic x86 general
purpose registers eax, ebx, ecx and edx can be used as operands interchangeably. Splitting
one higher level instruction into many mov instructions allows reordering of instructions
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by allowing the following instruction to already use the registers that are not needed any
more.

As an isomorphism of the MOVFUSCATORC there exist further hardening techniques
that generate a 1:1 translation of the MOV instructions to an equivalent sequence of
arithmetic instructions: This way, programs consisting only of arithmetic instructions,
like exclusive or, addition or subtraction, can be created. Due to the trivial 1:1 mapping
between the arithmetic program and the MOV program, this thesis only focuses on the
latter kind of programs.

3.3 Summary
In this Section the working principle of the MOVFUSCATOR has been elaborated. It is
based on the machine from Section 2.4.1 and uses a target register to emulated jumps.
Arithmetical operations are performed using look up tables, splitting every operation into
many instructions. Using these techniques a intermediate machine could be implemented,
only using MOV instructions, linearising the control flow.
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I will try to recover the original control flow in multiple steps. First static data like the
prologue setting up the machine are examined. Then multiple passes over the instructions
are performed. First the labels of the basic blocks are recovered. Then jump targets are
restored. Finally the acquired data is put together to reconstruct the control flow graph of
the underlying MOV machine.

4.1 MOVFUSCATORB
The MOVFUSCATORB translates a given program written in the Brainfuck language step
by step. It first sets up the environment and then replaces every symbol of the original
program by a static series of instructions. Only [ and ] have different code, since they have
to manage the labels. MOVFUSCATORB features four switches affecting the program in a
different ways.

• nojump: replaces the jump in the end with a segmentation fault for strict MOV
compliance. The signal handler for the segmentation fault signal is set to be the
program itself, without initialization of the environment.

• mmio: memory mapped input and output. Instead of using the kernel interface to
read and print character, the input and output is mapped into memory. This assumes
file backed input and output, or it will not work.

• O: Optimizes the program, instead of writing back the result after every ‘+‘, ‘−‘, ‘>‘
and ‘<‘ it writes back the accumulated result of a series of these instructions.

• cell16: Instead of having a cell width of one byte the cell width is increased to two
bytes.

However most of the code stays the same. The total lack of any randomization gives the
opportunity re-translate sequences of MOV instructions to Brainfuck program statements
therefore not only breaking the obfuscation but fully recovering the original source code.
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4.2 MOVFUSCATORC
MOVFUSCATORC is much more sophisticated than MOVFUSCATORB. It is implemented
as a back end for lcc, a retargetable C compiler and is able to compile source code written
in ANSI-C. The stream of instructions is much more complex. It also comes with python
scripts randomizing the output in different ways, like reordering instructions and swap-
ping the x86 base register. With the additional hardening introduced it is not possible any
more to simply build a finite automaton and retrieve the original source code. Much more
advanced techniques have to be used. Which we describe in the following.

4.2.1 Analysis of Static Setup

A very important part of MOVFUSCATORC is setting up the environment. The program
must have the ability to loop without any explicit instruction. To do so, a illegal instruction
at the end of the executable program is used in conjunction with a signal handler for the
illegal instructions. This handler is set to be the program itself. It is also marked to not
mask the signal, so it can occur during the signal handling itself, effectively restarting
the program over and over again. From this handler we can get the effective start of the
program, as it is the address of the signal handling function. Also a signal handler for
segmentation faults is registered. It is used to dispatch calls to external libraries. To call
the functions to set up the signal handler, arguments have to be passed on the stack. From
this we get to know the address of the emulated stack pointer sp, later used in patching
the binary executable. Then some more code is introduced that sets ON to one, once, calls
main and then exit. To toggle on the execution it uses a fixed series of instructions, as
seen in Listing 2. The toggle execution switch is set up to be one, and after executing these
instructions it is zero for the rest of the program’s lifetime.

Apart from the prologue MOVFUSCATORC also adds static data to the data section.
The data added are mostly look up tables. To identify those look up tables, we do a linear
sweep over the data segments. If we find a pointer into the data segment we try to identify
the look up table, and then skip an amount of data, according to the size of this table.
We only find two dimensional look up tables, since one dimensional ones don’t need
pointer into the memory. First we consider the size of the pointer array. If it holds only
two pointers, it is assumed to be a boolean operation. The result of boolean operations are
either zero or one, so we shift all possible results, so every result is at a unique bit position.
Then we use logical or to combine them into one value. We shift the value at index (0,0)
by 0, the one at (0,1) by one, the one at (1,0) by two and the one at (1,1) by three. Zero
represents false and one true. We check the result of this against the values from table 16a.
The and operation equals the value 0x8 because both values have to be one so that “and“
is one. (1,1) is shifted by three so a one there has value 8. or has the number 14, because
only the lowest bit is not set, because it only results in zero in case of (0,0). “XOR“ is true
in cases (0,1) and (1,0), which results in a six and equality holds true for (1,1) and (0,0).

1 mov eax , [ t o g g l e e x e c u t i o n ]
2 mov eax , [ s e l o n + eax ∗ 4]
3 mov [ eax ] , 1
4 mov [ t o g g l e e x e c u t i o n ] , 0

Listing 2: Toggleing on the execution for the first time

If it is not a boolean table, the pointer and their results are checked. If adjacent pointer
points to adjacent cells in the look up table, it simply indexes the same table. This is done
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operation value

and 0x8
or 0xE
exclusive or (xor) 0x6
equality (xnor) 0x9

(a) values to check for boolean operations

name value

bit set 0xCB
bit clear 0x4B
and 0x3
or 0xCF
xor 0xCC
mul l 0x8D
mul h 0x5

(b) result of accessing lookup tables at
(7,0xCB)

Figure 16: Signature values for different lookup tables

in case of the addition operation. Also the second element of the array is checked to be one.
After covering the corner cases for two dimensional look up tables we access a specific
element of the table to get the type of the table. The first index is capped to be 7, because
the tables to clear and set bits are that small, the second index can be as large as 255, the
highest number in one Byte. The result of the access will be one Byte. I set the first index
to seven, to have the highest number of bits set in it. Now we have to find a cell where
every table has a different value using the second index. To generate an overflow in the
multiplication so that the high word differs from zero, the two highest bits of the index
are set. This also covers the bit set and bit clear operations. The four lowest bits are set to
“1011“, to cover the logical operations. The lowest bit is only set to achieve a result other
than one for the and operation. This results in the number 0xCB. The result of accessing
the tables at index (0x7, 0xCB) can be found in table 16b. Mul l is the lower byte of the
multiplication and mul h is the high byte. They are two distinct tables.

After finding the base addresses of these tables, later accesses to these tables can be
substituted by their respective arithmetic operations.

4.2.2 Reconstruction of the Original Control Flow Graph

Reverse engineering can be a tedious and exhausting task, depending on the targeted
executable. There are many tools that assist the dynamic or static analysis of binaries, like
angr or Hex-Rays Interactive Disassembler (IDA). Those tools provide a substantial amount
of information to the person analyzing the executable. Based on the knowledge acquired
by those tools control flow graphs can be created. Those graphs show the connection
between different parts of code and give a hint on the importance of the basic blocks. The
person reverse engineering the executable can decide to elaborate a function more closely
or in a specific order based on this information. Most obfuscation tools affect this graph
in different ways. MOVFUSCATORC removes branches and makes it appear like a linear
stream of MOV instructions. It linearizes the graph by hiding the branch information
in the target and ON registers. Analysis of code that accesses those registers will reveal
information about the underlying structure and the original basic blocks. First we have
to find the addresses of the register controling the execution emulated in memory and
their location is not fixed. This data is revealed during the analysis of the static setup. The
reconstruction of the original control flow can be split into three phases:

• The first phase scans the executable and builds a map of all labels and their corre-
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sponding virtual address in the binary.

• The second phase performs another scan to retrieve all jump targets.

• In the third phase this data will be joined during a final sweep over the executable.

Finding the Labels In normal x86 assembly labels are used as jump markers. They
do not introduce code or overhead and merely act as jump targets. They mostly are a
convenience feature so that the programmer does not have to calculate the relative jump
distance such that the code stays relocatable. MOVFUSCATORC emulates jumps and
execution has to be toggled on at the jump target. Every label that is jumped to introduces
code into executable that checks if the current basic block’s label is the label targeted in
the target register. If it is targeted it writes one to ON. Returning from calls works similarly.
Usually the return instruction ret pops one address from the stack and jumps to it. Here,
it does not pop an address but rather a label. This label is automatically generated after
every call at compile time, so the functionality stays the same. The code introduced at a
label always performs three operations:

• Checking if the following basic block is the one with the targeted label

• Restoring of the register values (prevent spilled values)

• If the block is targeted writing one to ON, else writing a zero to this location

Labels are the only places where one is written to ON. This is done in three instructions
where b0 is the value of the equality check between label and target.

1 mov eax , [b0 ]
2 mov eax , [ s e l o n + eax ∗ 4]
3 mov [ eax ] , 1

After finding an instruction sequence like the above one, we perform a forward taint
analysis initially tainting eax (or any other register that is being used as index value in the
second instruction in case randomization is enabled). If this results in instruction three
reading tainted memory, we have found a label.

Next we examine the condition under which the toggle occurs to recover the basic
block’s label. We perform backwards taint analysis tainting the indexing register of the
second instruction. In this case it would be eax. When toggling on b0 is a temporary register
and the taint analysis will find the condition under which it is set to one. For labels the
syntax tree of the instructions retrieved from the taint analysis has a very specific form.
After replacing accesses to lookup tables with their corresponding function the tree looks
like figure 17. Here the complexity introduced by MOVFUSCATORC can be seen. The
simple comparison target == label is split into four parts. Each of these parts tests one
Byte of the equation and only if all bytes are equal execution is toggled.

This tree then is transformed into a set of axioms and constraints. The label and the
memory cell are modeled as 32 bit bit-vectors. While the label is a constant, the memory
cell is a variable. We feed this information, together with the axioms from the tree to the
SMT solver z3. After a check if the problem is satisfiable, z3 finds a function for the target
that satisfies the equation. If this function is a constant value, it is a label.
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Figure 17: Syntax tree obtained from backwards taint analysis to find a label

Finding the Jump Targets In the second phase we focus on getting all the jump targets,
so we can later decide what is a jump, return or call statement. The executable accesses
targets in a similar way as it accesses ON. It has a memory location sel target statically
prepared so that sel target points to the discard location and sel target +4 points to target.
The difference is, the position of sel on is easily obtained. In the second phase we do a
linear sweep over the executable. Until we find sel target, we analyze the second operand
of instructions of the form

1 mov r0 , [ o f f + r1 ∗ 4 ]

if off +4 points to target, it is assumed to be sel target. From now on, accesses to sel target
are found like accesses to sel on. Upon an access to sel target r0 is tainted and followed
forward, resulting in two possible instructions.

1 mov [r0 ] , l a b e l
2 mov [r0 ] , r1

In the first case, we found a regular or a conditional jump or a call. In the second case
we found either a return or an indirect jump. Indirect jumps are most commonly found in
implementations of switch case statements, where the jump target is fetched from a jump
table. We remember the current jump target and move forward. On finding a sel on that
results in toggling off, ON, we mark the target label as a jump target.

Joining the Data Joining the data is done during a third pass over the binary. In this
phase, we know all labels and whether a label is the targeted by at least on jump. The target
of this phase is to build a ordered map M of virtual addresses and corresponding actions,
like jumps, calls, returns and label. We assume that a unconditional jump, followed by
a label that is not targeted by any jump, is a call. During this phase we also generate a
patched version of the binary executable using x86 call, jmp, jnz, test pop instructions.
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In Section 5 this patched version is compared against the original version in terms of
semantic equivalence.

During the third pass we continuously update the current jump target like when we
searched for jump targets. But when we find an access to ON we elaborate more closely.
If execution is toggled on, we look up the corresponding label to the virtual address,
acquired during the first phase. This label is then added to our map M . If execution is
toggled off, we first taint the index register of the instruction assessing sel on. This will
reveal the circumstances under which execution is toggled of. If the analysis results in
not just access to ON, it is an indirect jump. We add this indirect jump together with the
current target to M . If toggling only depends on ON, and the target is simply a label, it is
a jmp or a call. To decide whether it is a jump or call we look at the next label. If it is not
targeted by a jump we assume that we found a call. Either way we add the jmp or call to
our map M . The last possibility is the indirect jump. This indirect jump is assumed to be a
return statement, and also added to M .

Building the Graph Now that we have a the mapM containing all the information about
our control flow we can start to build a graph of it. MOVFUSCATORC is implemented to
first call main after setting up the environment. So we know which label corresponds to
the main function and start from there. To build the graph we use the M and make a copy
of it C. We also introduce two lists F and J , each holding virtual addresses. F is a list of
function starts that have to be processed, and J is a list of jump targets of the function
currently processed. Initially J is empty and F contains the address of the label of the
main function. If J is empty and F is not the first element is taken from F and put into J .
J now only contains the beginning label of a function. An empty directed graph is created.
While there are elements in J , the first element e is retrieved from C based on it’s virtual
address. If e does not exist in C because it may has already been deleted, we continue with
the next element from J . It is attempted to create a new node with the virtual address as a
key and if such node already exists that node will be modified instead. Then e is deleted
from C. If e is a jump an edge with value two to the node corresponding to the target
address is created, and if such node does not already exist, it is created. If it is a call, the
target is added to F . If e is a conditional jump, a call or a label, an edge with value one to
the next higher address corresponding to an element in M is created. This is equivalent to
continuing execution in the program. If e is not a jump or return, then the next element with
a higher address is retrieved from C which is processed like e. Removing the elements
from C prevents the implementation from examining the same jump targets and elements
again, so that the run time is bound by the number of elements in M . When J is empty
after processing a function the graph can be simplified to represent basic blocks. For that
we look at every node and if it only has one successor and the edge has a value of one,
both nodes are part of the same basic block. This is due to the fact that a value of one on
the edge is equivalent to continueing execution and a conditional jump has two successors.
Those two nodes are then joined, adding edges from the first node to the successors of the
second node with their respective value. Then the second node is deleted. The first node
looked at again if it can be joined with further nodes.

4.3 Patching the Binary
While joining the data from the labels and the jump targets another pass over the executable
is performed. During this pass, a patched version of the binary is created. This is done
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by replacing instructions in place with other instructions like call or jmp, that make the
control flow explicit again. In this section I will show what instructions will be patched
and explain why the semantics of the program stays the same during the patching process.
On finding an unconditional jump, not a call, the instruction that sets ON to zero is replaced
by a relative jump to the targeted label. More precisely, the end of the check, where ON
is set to one is targeted. The remaining bytes of the original instructions are overwritten
with nop instructions. This skips all the code that may not effect the machine, since ON is
zero, so execution is “off“. Calls work very similar, instead of replacing the instruction
with a jmp a series of instruction is introduced.

1 mov esp , [ sp ] ; s y n c h r o n i z e s t a c k
2 pop eax ; pop r e t u r n l a b e l
3 c a l l l a b e l ; c a l l f u n c t i o n
4 jmp r e t u r n l a b e l ; s k i p t h e l a b e l c h e c k

First the real stack and the emulated stack are synchronized, then the return label is
popped. The the call is executed. This makes sure that on a return, an address, instead
of a label is written to the jump target, target. At the end a jump to the return label is
included. This is necessary, since these instructions overwrite more than one instruction
which could have unpredictable side effects. So instead of executing this code, we jump to
the dedicated return label for that call. Conditional jumps are a little more complex. The
result of the test whether to jump or not can be found in the instruction accessing sel on. If
the index register holds one, the jump is executed, else it is not. The index register may
only hold either one or zero. We replace this instruction with the instruction “test R, R“
to update the x86 status register and to set the zero flag if R is zero. Then we replace the
toggle off instruction with a jnz label, like with the unconditional jump. This jump is
only executed if the zero flag in the machine status register is set. Mov instruction do not
affect the machine status register, only the status register of the emulated machine. So this
code works independent of the mov instructions in between. Last we have indirect jumps
that we assume to be return statements.

4.3.1 Recovering of the Original Function Hierarchy

Concurrent to building the control flow graphs of the functions a call graph is generated.
To find a call during processing the address of a function is not only added to F , but also
an edge is created in the call graph. This edge starts at the function being processed and
targets the called function. Differentiation between calls an jumps is done like mentioned
earlier. If a label follows a jump that is not targeted by any jump it is assumed to be a call.
This assumption is based on the way the MOVFUSCATORC works, namely by labeling
basic blocks. To jump to a basic block the label is loaded into target. In the beginning of
most basic blocks, the label of that basic block is checked against target. This entails that
for every call there must be a label directly after the call that is targeted by the return.

4.3.2 Instruction Re-Substitution

A big problem working with code obfuscated by MOVFUSCATORC is splitting higher
level instructions like addition into many mov instructions and multiple look ups into
the look up tables. An equality check of two 32 bit registers for example consists of four
look ups into the equality table as explained in context of reconstructing jump labels.
Combining the results of these look ups takes another three look ups into the boolean and
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table, resulting in seven look ups in total in case of a simple comparison. To recover the
underlying structure of the higher level instructions I propose two different ways. The first
possibility is using symbolic execution to execute one basic block at a time. The resulting
mathematical function have to be compiled into x86 instructions afterwards, a task that
may not be trivial, depending on the size of the translated basic block. For the second
possibility we start at the end of a basic block. From there we iterate backwards over the
instructions. Once we find a writing memory access we taint the source of it. The data
flow tree resulting from the taint analysis is then processed. If a part of the tree matches
the signature of an operation (i.e. accesses an array known to perform a certain arithmetic
operation), the part of the tree can then be replaced by the operation.

4.3.3 Defeating the Randomization

MOVFUSCATORC introduces additional hardening mainly in form of instruction reorder-
ing and register renaming. Other methods are substitution of the mov instruction by
different instructions. Here we will focus on the first two methods. First, register renam-
ing: The flow of information stays the same while the operands of mov instructions are
renamed, if possible. Clearly, the taint analysis we use to recover the labels and jump
targets is fully independent of this particular information and therefore resistant to register
renaming. The taint sources and propagation is chosen so that they are independent of the
name of the register being tainted.

Reordering instructions can become problematic in an edge case: The instruction
writing back to memory can be put after toggling ON off. This can be done since the
decision whether the change is written back or discarded is made in an earlier instruction,
and the result is determined by the point ON is toggled off. This may result in a patched
version that performs different from the original version and can also effect our current
implementation of the taint analysis.
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This section focuses on the effectiveness of the MOVFUSCATOR obfuscation as well as our
approach of deobfuscation. First, we give a rough estimator on the cost of the obfuscation
in terms of run time overhead and size of the generated code. In the second part we
evaluate the methods as introduced by section 4 using different metrics:

• To measure control flow similarity, we compare the number of nodes and edges of
an original sample program and its obfuscated and deobfuscated counterparts,
respectively.

• In order to show that the presented algorithm leaves the program’s original func-
tionality intact, we apply it to an obfuscated version of an implementation of the
sha2-256 [7] hash function.

• To measure the degree of simplification we also consult a simple instruction count
metric

• As a non-academic addition we show that the proposed algorithm significantly
decreases the complexity of an analysis of two selected programs whose proper
source code we didn’t control before: One that had been presented as challenge in
the 2015 edition of the Hackover8 capture the flag contest and an implementation
of the Advanced Encryption Standard that had been provided by the author of the
MOVFUSCATOR as a proof of concept.

5.1 Obfuscation
The main reason for evaluating the performance of the obfuscated code is to estimate the
attractiveness of the MOVFUSCATOR for obfuscating real-world code such as malware.

5.1.1 Size and Time Penalty

First we compare the execution time of a program obfuscated with MOVFUSCATORB
against a static translation from Brainfuck to machine code. We do not use an interpreter
to execute the code since MOVFUSCATORB creates a file in assembly language which

8https://hackover.de/
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Name MOVFUSCATORB Static Translation Description
time size time size

sum 26 ms 285 KiB 0.7 ms 11.2 KiB calculates the sum of digits
prime (20) 1398 ms 352 KiB 2.87 ms 28.9 KiB calculates the primes up to 20
factor (84) 292 ms 486 KiB 36 ms 43.6 KiB splits 84 into its prime factors

Table 6: Comparison between MOVFUSCATORB and a static translation of the code, averaged over five
runs

is assembled into machine code. To reduce the overhead introduced by an interpreter
we translate each brainfuck instruction into an equivalent c instruction and compile
that program. For translation we use a slightly modified version of Steve Johnsons9

implementation. The only thing I changed was allocating more memory as the array
of cells and also setting the pointer to roughly one third into it. This should prevent
segmentation faults by walking left or right out of the array. The resulting C file is compiled
using the gnu c compiler without optimization. Table 6 shows the overhead in terms of
size and run time introduced by obfuscation of Brainfuck code using MOVFUSCATORB.
As can be seen from the table, employing the MOVFUSCATORB increases program size
by an factor of about 10 to 20. Run times vary drastically from about a factor of 4 up to a
factor of about 500 depending on the application’s logic. An odd thing to mention is that
for MOVFUSCATORB, prime has a longer run time than factor while the run time of the
un-obfuscated versions is exactly the other way round. One possible explanation for this
is that factor internally works using trial division, an algorithm that is very costly when
implemented in brainfuck.

For the MOVFUSCATORC we created a small test bench of dummy programs with
an easy control flow, so we can do proper evaluation. These programs are call, for loop,
if then else and switch. All of them represent a basic control flow concepts like loops,
conditional jumps and calls. They are very small in code size, so most of the program’s
size is static overhead introduced by the executable format they’re stored in. The run
time of their un-obfuscated versions also is pretty similar, because initialization takes
a significant amount of time for such small executable programs. To properly compare
the overhead we created primes, an implementation of the sieve of Eratosthenes. Also an
implementation of the advanced encryption standard, tiny-aes12810, is tested. A third
example is the hash function sha2-256 as implemented by Brad Conte11. Some minor
adjustments were needed to get lcc to compile the SHA implementation correctly. As seen
from Table 7 the size overhead introduced by the look up tables significatly amounting
around 5.5 MiB. While the run time overhead for the small programs is negligible, it
becomes quite large when adding loops and complexity to the original, un-obfuscated
version of the program.

It is difficult to make a general estimation of the run time penalty due to the fact that
for every backwards jump, the whole program will be executed once more, effectively
adding a term depending on the total size and the layout of the program to its complexity.
As seen in the table the program will become slower by factors of thousand, but it is hard

9http://awk.info/?doc/bfc.html
10https://github.com/kokke/tiny-AES128-C/
11https://github.com/B-Con/crypto-algorithms
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name MOVFUSCATORC lcc + as + gcc
time size time size

call 0.98 ms 5.67 MiB 0.76 ms 3.11 KiB
for loop 0.99 ms 5.67 MiB 0.77 ms 3.05 KiB
if then else 0.95 ms 5.67 MiB 0.76 ms 3.13 KiB
primes (100) 3.50 ms 5.71 MiB 0.78 ms 3.58 KiB
switch 1.01 ms 5.67 MiB 0.77 ms 3.20 KiB
tiny-aes128 2591 ms 6.28 MiB 1.18 ms 12.7 KiB
sha2-25612 81425 ms 5.87 MiB 28.8 ms 6.13 KiB

Table 7: Runtime comparison between the MOVFUSCATORC version and the x86/linux version averaged
over 1000 runs

to estimate the exact factor, how much slower it will become. Measurements have been
done on an Intel Core I5 M 460 clocking at 2.53 Ghz. Clearly, obfuscating complicated
algorithms with the MOVFUSCATORC is not a good idea if performance is an issue.

5.2 Deobfuscation
In this subsection I will evaluate the proposed methods to de-linearize the control flow
graph and retrieve an semantic equivalent binary that uses explicit control transfers, like
jumps and calls.

5.2.1 Control Flow Flattening

To show the flattening of the control flow we compiled several small programs using
MOVFUSCATORC. We then used the described methods to retrieve the underlying control
flow graph of the simulated machine. We also compiled the same program with the same
compiler, only using the x86/linux target instead of the mov target. We generated a control
flow graph from the second binary as well and compared them with each other.

First I want to examine a basic program only containing one if-then-else statement. It
outputs the number of parameter passed to the program, its code can be found in listing 3.
As additional hardening the register renaming script has been applied to the assembly
code. The reference graph and the generated graphs are straight forward. Both show the
entry into the function first, then two blocks which are executed under a certain condition
and in the end the function epilogue, as seen in Figure 18. As additional hardening
instruction reordering has been applied. It only affected the names of nodes, as the start
end end position of basic blocks changed.

The second example is an implementation of a for loop. The for loop is iterated over
ten times. On every of these iterations it prints out the number of iterations it already did,
see listing 4.

The control flow graph of the reference executable shows the flow of the program
very clearly. The first basic block includes the function prologue and initialization of i.
The second basic block is the body of the for loop, with the check on the condition in the
end. The condition is not checked on first entering the loop, because the range of the loop
is fixed, and it will always be executed at least once. The last basic block contains the
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1 # include <s t d i o . h>
2

3 i n t main ( i n t argc , char argv ) {
4 i f ( argc == 1)
5 puts ( ”There i s one argument” ) ;
6 e lse
7 p r i n t f ( ”There are %d arguments\n” , argc ) ;
8 return 0 ;
9 }

Listing 3: if-then-else program

prologue

one argn args

epilogue

true false

jump

Reference graph of if-then-else

804895f

80493728048f04 f

80497dc

true false

jump

Graph of if-then-else by analysis

Figure 18: Control flow graphs for the if-then-else program

function epilogue and returns zero. Figure 19 is the graph retrieved from the interactive
disassembler (IDA)13, while Figure 20 shows the graph generated by the analysis. In
this simple example isomorphism can easily be seen. The analysis outputs the virtual
address of a block as its name, while IDA outputs either a corresponding label or assembly
code. The labels of the reference graph have been changed to simplify it. The additional
hardening applied to this program was register renaming. It had no effect on the analysis
and the resulting graph, as expected.

The third control transfer operation I want to show in a small example is the call
instruction. To do so I will evaluate the call graph as well as the, control flow graphs of
the functions. The program takes the first command line argument which is its name by
convention. Then it calls a function that prints all text following the last slash.

In the call program, all the main function does is calling print name. After a short
inspection of the call graph, and relabeling fun 804a6f7 with main, and fun 804891e with

13https://www.hex-rays.com/products/ida/index.shtml

1 # include <s t d i o . h>
2

3 i n t main ( i n t argc , char argv ) {
4 i n t i ;
5 for ( i = 0 ; i < 1 0 ; i ++)
6 p r i n t f ( ” loop run #%d\n” , i ) ;
7 return 0 ;
8 }

Listing 4: for loop
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prologue

loop

epilogue

true

false

Figure 19: Reference graph

804891e

8048e29

80495cc f

true

false

Figure 20: graph from analysis

1 # include <s t d i o . h>
2

3 void print name ( char ∗path ) {
4 i n t i ;
5 i n t p = 0 ;
6 for ( i = 0 ; path [ i ] != 0 ; i ++) {
7 i f ( path [ i ] == ’/ ’ )
8 p = i ;
9 }

10 puts ( path + p + 1) ;
11 }
12

13 i n t main ( i n t argc , char∗∗ argv ) {
14 print name ( argv [ 0 ] ) ;
15 return 0 ;
16 }

Listing 5: the call program

fun 804a6f7

fun 804891e

Figure 21: The generated call graph

print name, the resulting graph is as expected.
At last I will evaluate code generated for a switch case statement, as seen in Listing 6.

Switch case statements usually differ strongly in the way they are implemented from an if
then else statements. Instead of checking every case, a jump table is used. This is done in
two steps, first the program checks that the argument is within the bounds of the cases, if
it is not the default case is jumped to. Second, an offset is calculated based on the switch
value. A table containing the jump targets for all cases is then accessed at the calculated
offset, effectively jumping to the case handling that value. The MOVFUSCATORC uses
labels instead of addresses, but the way the switch works is the same. Since the label
originates from memory an indirect jump is used to dispatch the jump. One assumption
that I made during the analysis was, that indirect jumps are return statements. The graph in
Figure 22, clearly shows a lack of basic blocks compared to what was expected. Going back
to how the algorithm works, we can understand the wrong behavior. On encountering
an indirect jump, it is assumed that this jump is part of a return statement, so a return
element is added to the graph and the path is not further investigated. The actual target is
not retrieved, so the algorithm has no knowledge about the labels targeted by the switch
and instead of adding branches, the algorithm finishes.

Apart from the above mentioned examples I also evaluated a more complex program,
an implementation of the secure hash algorithm 2. The number of functions that have
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1 # include <s t d i o . h>
2

3 char data [ 7 ] [ 7 ] = {” never ” , ”gonna ” , ”
give ” , ”you ” , ”up ” , ” l e t ” , ”
down ” } ;

4

5 i n t main ( i n t argc , char ∗∗argv ) {
6 char ∗ t x t ;
7 switch ( argc ) {
8 case 1 :
9 case 6 :

10 t x t = data [ 0 ] ;
11 break ;
12 case 2 :
13 case 7 :
14 t x t = data [ 1 ] ;
15 break ;
16 case 3 :
17 t x t = data [ 2 ] ;
18 break ;
19 case 4 :
20 case 9 :
21 t x t = data [ 3 ] ;
22 break ;
23 case 5 :
24 t x t = data [ 4 ] ;
25 break ;
26 case 8 :
27 t x t = data [ 5 ] ;
28 break ;
29 default :
30 t x t = data [ 6 ] ;
31 break ;
32 }
33 p r i n t f ( ”%s\n” , t x t ) ;
34 return 0 ;
35 }

Listing 6: switch case program

804891e

804908a f

8048e05 f

804a848

false

true

false true

Figure 22: graph generated for switch-case

been found is equal to the number of functions in the binary, also the call graph generated
is isomorph to the call graph for the reference executable, generated by IDA. For every
control flow graph of a function, a isomorph control flow graph of the reference could be
found, giving us a set of isomorph graphs. This suggests that the implementation of our
algorithm for deobfuscation behaves within reasonable boundaries.

5.2.2 Empirical Correctness

We did not only compare the generated graphs against references, but we also tried to
execute the patched binary and find any differences in the program’s behaviour. First
we tested all of the above programs. All acted as their non modified counter part with
the exception of the switch program that did not terminate for ten seconds and was then
stopped.

Exemplary for a complex real-world program we also tested tiny-aes128-C, an small
implementation of AES, where the output of the modified version matched exactly the
output of the original version.

Last we also applied our algorithm on an obfuscated version of the SHA2 function,
more specifically SHA2-256. The only change I did to the original implementation was the
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use of only 32 bit wide integers, instead of 64 bit wide ones. This is due to the fact, that lcc
produced an incorrect executable that generated a wrong hash value. Using 32 Bit wide
integers fixed this issue. With this change, all three versions passed the test and returned
the expected result.
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6 Summary

6.1 The MOVFUSCATOR in the Real World
One of the goals of this thesis is the evaluation of control flow linearization and instruction
set reduction in terms of real world attractiveness. To do so, it is a reasonable choice
to compare its benefits against the penalties a program suffers when being obfuscated
using the MOVFUSCATOR from an defender’s (obfuscator’s) point of view. This is done to
estimate the relevance of these techniques in obfuscating different programs.

Like mentioned in the beginning, the potential subjects employing control flow lin-
earization could be in whitebox cryptography as used in digital rights management. Malware
developers also use obfuscation to hide the functionality of their programs, to stay unde-
tected or make an analysis very time consuming.

First I want to point out supporting factors of the MOVFUSCATOR. It is a new technique
that instead of flattening the control flow or adding code that can not be reached under
normal circumstances, linearizes it. Jumps are emulated causing the whole program is
executed as a single basic block in a loop. This effectively reduces the program to a single
basic block spanning all instructions. Instead of looking at the functions one by one, an
analyst now has to consider the program as one block and has to find function primitives
first. Instruction set reduction further increases the complexity of this one basic block by
replacing arithmetic instructions by many MOV instructions.

The downside to these techniques is the added overhead in terms of generated code
size and run time, as seen in Subsection 5.1. Most of that size overhead is due to the
fact that MOVFUSCATORC uses many look up tables to perform the different operations
trading in memory for improved run-time performance. MOVFUSCATORB does not suffer
from a size penalty that severe, since it only needs a few look up tables. The downside
to MOVFUSCATORB is that because it only has a few look up tables other functionality
has to be emulated, leading to a enormous time overhead. While the time overhead of a
program obfuscated with MOVFUSCATORC is not that high, it is still much slower than its
not obfuscated counter part. Due to that time penalty it is practically not usable in systems
that need a high throughput of information, like streaming high definition video over the
internet or stealing personal data by encrypting them on disk. MOVFUSCATOR could be
attractive for malware but the increase in size makes it harder for the malware to hide
and may be a hindrance when it tries to spread over the internet. Additionally, a program
consisting of only one type of instructions can easily be flagged by anti-virus scanners.
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6.2 Towards Practically Feasible Deobfuscation
One of the core features of the MOVFUSCATOR is its ability to hide the effective control flow.
The core contribution of our work is a generic approach that recovers the control flow of a
protected binary, as shown in Section 4. Using the techniques described there the control
flow consisting off the position and the size of the basic blocks could be reconstructed in
most cases most cases. Due to time constraints, my approach can currently not handle
indirect jumps, so it doesn’t recover the control flow of all possible programs, but at least
a good portion of it (including sophisticated hashing and encryption algorithms). The
presented approach is sound against arbitrary register renaming and to a certain extent to
instruction re-ordering.

6.3 Future Work
With knowledge of the control flow of the program and the virtual addresses of the basic
blocks an analyst can split the executable into multiple parts and look at the basic blocks
one at a time. Symbolic execution can then be employed to execute such basic blocks and
retrieve the original instruction semantics. A way around the lack of processing indirect
jumps is to use binary instrumentation. Instead of executing the indirect jump in the
patched version, the jump target, obfuscated as a label, can be looked up in the list of
labels retrieved during analysis. A relative jump to this label is then performed in place
of the indirect jump. In case of a switch case statement this will only give one target
corresponding to the statement.

As seen in the evaluation reconstruction of the control flow works in most general cases,
with only indirect jumps posing a problem. With indirect jumps commonly employed
in the implementation of switch case statements this incapability is a serious lack in
usefulness. I will try to address this issue in future work by improving my analysis
methods and correcting the wrong assumption that indirect jumps are return statements.
A second issue I would like to address is retrieving the higher level instructions. The
assembly code is not easy to read and with simple operations spread out over multiple
instructions analysis can become very difficult. This may be done by finding accesses
to the look up tables and analyzing the binary locally around to find a pattern that can
be matched to an operation. If such pattern is found the involved instructions could be
replaced by fewer, more explicit instructions.
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